

HOBSON XCHEM™ V401

VINYLESTER

XCHEM™ PRO

ETA 24/0507 (2025/05/28)

Option 1[†]

DOC Link 0507

[†] Suitable for use in Cracked and Non-Cracked Concrete.

ETA-Danmark A/S
Göteborg Plads 1
DK-2150 Nordhavn
Tel. +45 72 24 59 00
Fax +45 72 24 59 04
Internet www.etadanmark.dk

Authorised and notified according
to Article 29 of the Regulation (EU)
No 305/2011 of the European
Parliament and of the Council of 9
March 2011

MEMBER OF EOTA

European Technical Assessment ETA-24/0507 of 2025/05/28

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

Hobson Engineering Vinylester V401

Product family to which the above construction product belongs:

Bonded injection type anchor for use in concrete:
sizes M8 to M24, rebar 8 to 25 mm

Manufacturer:

Hobson Engineering Company Pty Ltd
10 Clay Place
Eastern Creek
NSW 2766
Australia
Tel. +61 2 8818 0288
Internet www.hobson.com.au
Plant 5

Manufacturing plant:

This European Technical Assessment contains:

20 pages including 14 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

EOTA EAD 330499-02-0601, "Bonded fasteners for use in concrete"

This version replaces:

The ETA with the same number issued on 2024-06-07

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The Hobson Engineering Vinylester V401 is a bonded anchor (injection type) for concrete consisting of a cartridge with Vinylester V401 injection mortar and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M24 or a reinforcing bar in the range of diameter 8 to 25mm.

The product specification is given in annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years and 100 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annexes C1-C5.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex C6.

Hygiene, health and the environment (BWR3):

No performance assessed

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 has been made in accordance with EOTA EAD 330499-02-0601, “Bonded fasteners for use in concrete” option 1 and 7.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base


4.1 AVCP system

According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.

Issued in Copenhagen on 2025-05-28 by

A handwritten signature in blue ink, appearing to read "Thomas Bruun".

Thomas Bruun
Managing Director, ETA-Danmark

Cartridge: Hobson Engineering Vinylester V401

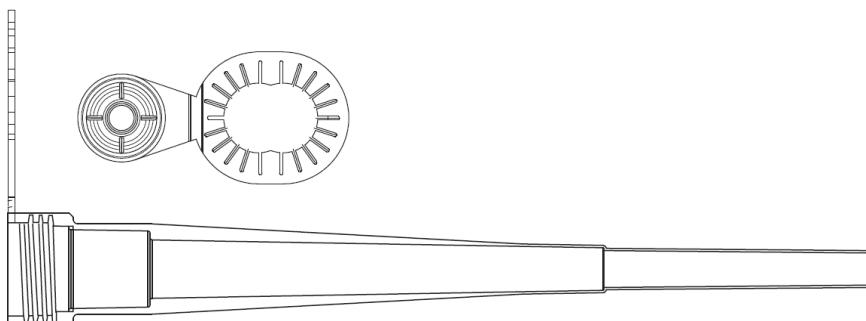
- A) Foil Bag Cartridge 165ml, 300ml. (ChubSeal® & Chubpack™)
- B) Coaxial Cartridge 380ml / 400 ml / 410 ml / 420ml
- C) Side by Side Cartridge 345ml, 825ml

Cartridge Print:

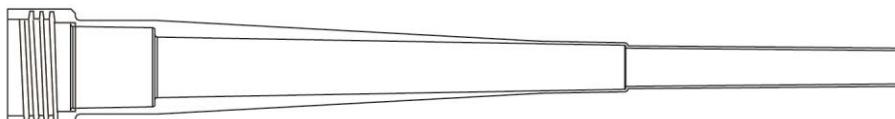
Hobson Engineering Vinylester V401
Including - Installation procedure,
Production Batch code, Expiry Date,
Storage conditions, Health & Safety
warning, Gel & Cure time according to
temperatures.

A)

B)



C)


Marking:

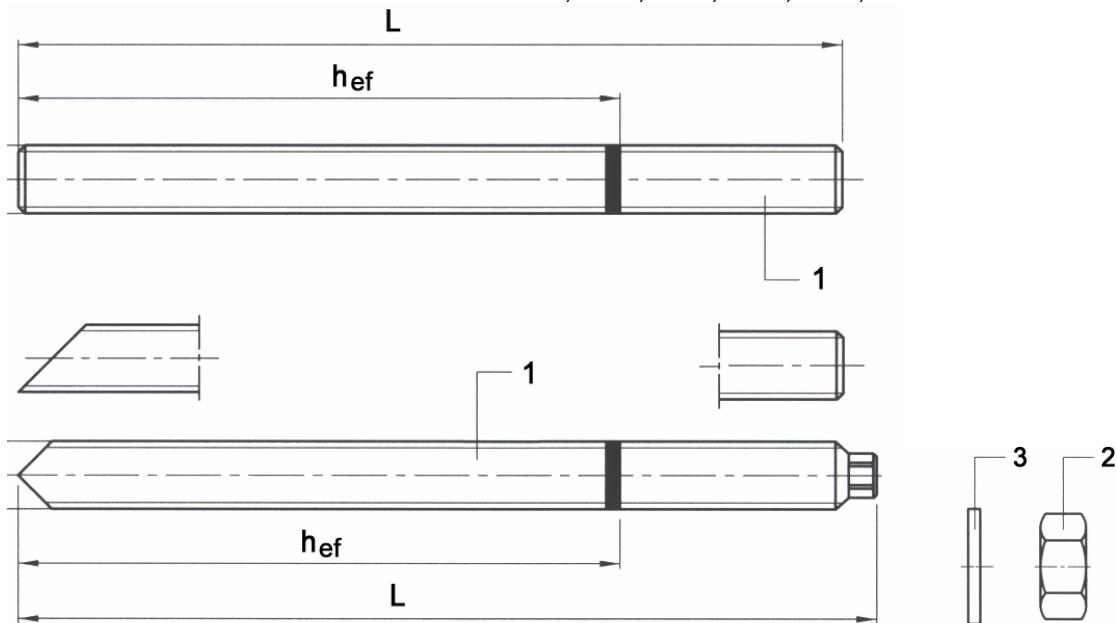
Vinylester V401
Batch code, either expiry date or manufacturing date with shelf life

Mixer with hanger

Mixer

HOBSON ENGINEERING VINYLESTER V401

Product and intended use


Annex A1

of European
Technical Assessment
ETA-24/0507

Anchor rod and rebar

Threaded Steel Stud, Nut and Washer

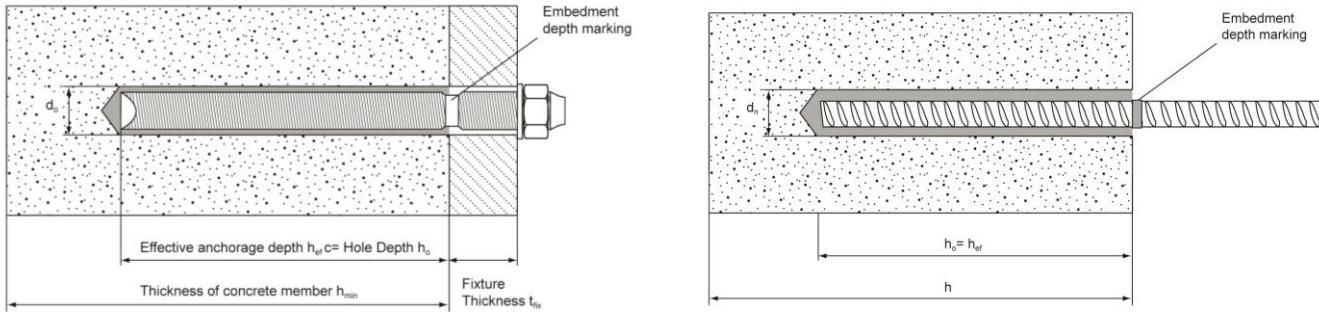
Sizes M8, M10, M12, M16, M20, M24

Rebar

Diameter Ø 8mm, Ø 10mm, Ø 12mm, Ø 14mm, Ø 16mm, Ø 20mm, Ø 24mm, Ø 25mm,

HOBSON ENGINEERING VINYLESTER V401

Threaded rod types and rebar's dimensions


Annex A2

of European
Technical Assessment
ETA-24/0507

Installed Anchor and Intended Use

Table A1: Installation details for anchor rods

Anchor size		M8	M10	M12	M16	M20	M24
Diameter of element	d [mm]	8	10	12	16	20	24
Range of anchorage depth h_{ef} and bore hole depth h_o	min [mm]	60	60	70	80	90	100
	max [mm]	96	120	144	192	240	288
Nominal diameter of drill bit	d_o [mm]	10	12	14	18	22	28
Diameter of clearance hole in the fixture	d_f [mm]	9	12	14	18	22	26
Maximum torque moment	T_{max} [Nm]	10	12	20	40	70	90
Minimum thickness of concrete member	h_{min} [mm]	$h_{\text{ef}} + 30\text{mm}$ $\geq 100\text{mm}$			$h_{\text{ef}} + 2d_o$		
Minimum spacing	s_{min} [mm]	40	40	60	75	95	115
Minimum edge distance	c_{min} [mm]	35	40	45	50	60	65

Table A2: Installation details for rebar

Rebar size (mm)	Φ 8	Φ 10	Φ 12	Φ 14	Φ 16	Φ 20	Φ 24	Φ 25
Diameter of element	d [mm]	8	10	12	14	16	20	24
Range of anchorage depth h_{ef} and bore hole depth h_o	min [mm]	60	60	70	75	80	90	100
	max [mm]	96	120	144	168	192	240	288
Nominal diameter of drill bit	D_o [mm]	10/12	12/14	14/16	16/18	20	25	28
Minimum thickness of concrete member	h_{min} [mm]	$h_{\text{ef}} + 30\text{mm}$ $\geq 100\text{mm}$			$h_{\text{ef}} + 2d_o$			
Minimum spacing	s_{min} [mm]	40	50	60	70	80	100	120
Minimum edge distance	c_{min} [mm]	40	50	60	70	80	100	120

HOBSON ENGINEERING VINYLESTER V401

Installation details for threaded studs and rebar

Annex A3

of European
Technical Assessment
ETA-24/0507

Table A3: Threaded rod and rebar materials

Designation	Material
Threaded rods made of zinc coated steel	
Threaded rod M8 – M24	Strength class 4.6 to 12.9 EN ISO 898-1 Steel galvanized $\geq 5\mu\text{m}$ EN ISO 4042 Hot dipped galvanized $\geq 45\mu\text{m}$ EN ISO 10684
Washer ISO 7089	Steel galvanized EN ISO 4042; hot dipped galvanized EN ISO 10684
Nut EN ISO 4032	Strength class 8 EN ISO 898-2 Steel galvanized $\geq 5\mu\text{m}$ EN ISO 4042 Hot dipped galvanized $\geq 45\mu\text{m}$ EN ISO 10684
Threaded rods made of stainless steel	
Threaded rod M8 – M24	Strength class 50, 70 or 80 EN ISO 3506; Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 end 10088
Washer ISO 7089	Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 end 10088
Nut EN ISO 4032	Strength class 70 and 80 EN ISO 3506-1; Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 end 10088
Threaded rods made of high corrosion resistant steel	
Threaded rod M8 – M24	Strength class 70 or 80 $R_m = 800 \text{ N/mm}^2$; $R_{p0,2}=640 \text{ N/mm}^2$ High corrosion resistant steel 1.4529, 1.4565 EN 10088
Washer ISO 7089	High corrosion resistant steel 1.4529, 1.4565 EN 10088
Nut EN ISO 4032	Strength class 70 EN ISO 3506-2; High corrosion resistant steel 1.4529, 1.4565 EN 10088
Rebars	
Rebars $\phi 8$ to $\phi 25$	class B and C of characteristic yield strength f_{yk} from 400 MPa to 600 MPa

HOBSON ENGINEERING VINYLESTER V401

Materials

Annex A4of European
Technical Assessment
ETA-24/0507

Specifications of intended use

Anchorage subject to:

- Static and quasi-static loads: M8 to M24, Rebar Ø8 to Ø25 for 50 and 100 years working life

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Cracked and non-cracked concrete: M8 to M24, Rebar Ø8 to Ø25.

Temperature Range:

- I: - 40 °C to +40 °C (max long-term temperature +24 °C and max short-term temperature +40 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel A2 according to Annex A4, Table A1: CRC II
 - Stainless steel A4 according to Annex A4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A4, Table A1: CRC V (for marine environment)

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The Anchorages are designed in accordance with:
 - EN 1992-4:2018
 - Technical Report TR055, edition 2018

Installation:

- Dry and wet concrete.
- Flooded holes (not sea water).
- Hole drilling by hammer drilling (HD) or compressed air drilling (CD) used in Category 1 (dry and wet concrete) and Category 2 (flooded holes) for 50 and 100 years working life.
- Hole drilling by hollow drill bits for dust free drilling (HDB) (e.g. Bosch self-cleaning system including vacuum cleaner) used in Category 1 – dry and wet concrete for 50 years working life.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

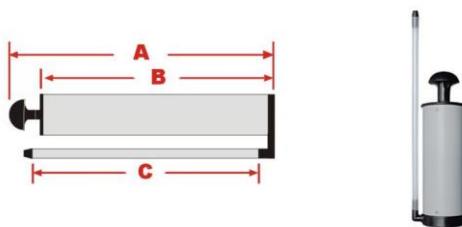
HOBSON ENGINEERING VINYLESTER V401

Intended use - Specification

Annex B1

of European
Technical Assessment
ETA-24/0507

Table B1: Installation data


Threaded rod and rebar	Size	Nominal drill bit diameter d_o (mm)	Steel Brush	Cleaning methods		
				Hollow drilling with vacuum cleaner (HDB)	Manual cleaning (MAC)	Compressed air cleaning (CAC)
Studs	M8	10	10 mm	No cleaning needed	$h_{ef} \leq 80$ mm	Yes
	M10	12	12 mm		$h_{ef} \leq 100$ mm	
	M12	14	14 mm		$h_{ef} \leq 120$ mm	
	M16	18	18 mm		$h_{ef} \leq 160$ mm	
	M 20	22	22 mm		$h_{ef} \leq 200$ mm	
	M 24	28	28 mm		$h_{ef} \leq 240$ mm	
Rebar	$\phi 8$ mm	10 or 12	10 or 12 mm	No cleaning needed	$h_{ef} \leq 80$ mm	Yes
	$\phi 10$ mm	12 or 14	12 or 14 mm		$h_{ef} \leq 100$ mm	
	$\phi 12$ mm	14 or 16	14 or 16 mm		$h_{ef} \leq 120$ mm	
	$\phi 14$ mm	16 or 18	16 or 18 mm		$h_{ef} \leq 140$ mm	
	$\phi 16$ mm	20	20 mm		$h_{ef} \leq 160$ mm	
	$\phi 20$ mm	24	24 mm		$h_{ef} \leq 200$ mm	
	$\phi 24$ mm	28	28 mm		$h_{ef} \leq 240$ mm	
	$\phi 25$ mm	30	30 mm		$h_{ef} \leq 250$ mm	

Manual Cleaning (MAC):

Chemfix hand pump recommended for Blowing out bore holes with diameters $d_o \leq 24$ mm and bore holes depth $h_o \leq 10$ d

Compressed air cleaning (CAC):

Recommended air nozzle with an Orifice opening of minimum 3,5mm in diameter.

Hollow Drilling and Vacuum (HDB) (e.g. Bosch®)**Steel brush just for manual cleaning and CAC (not needed for HDB)****HOBSON ENGINEERING VINYLESTER V401**

Intended use – data

Annex B2

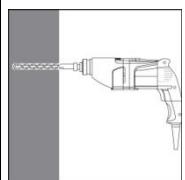
of European
Technical Assessment
ETA-24/0507

Table B2: Minimum curing time

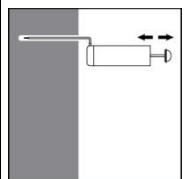
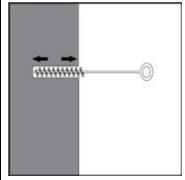
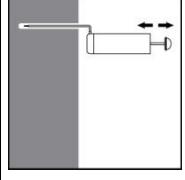
Minimum base material temperature C°	Gel time (working time) In dry/wet concrete STANDARD VERSION	Gel time (working time) In dry/wet concrete TROPICAL VERSION	Curing time in dry concrete	Curing time in wet concrete or flooded holes
0°C ≤ T _{base material} < 10°C	20 min	20 min	90 min	180 min
10°C ≤ T _{base material} < 20°C	9 min	15 min	60 min	120 min
20°C ≤ T _{base material} < 30°C	5 min	10 min	30 min	60 min
30°C ≤ T _{base material} ≤ 40°C	3 min	8 min	20 min	40 min

The temperature of the bond material must be ≥ 20°C

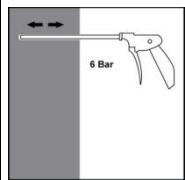
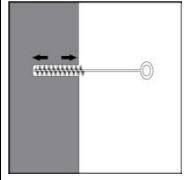
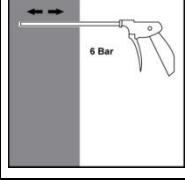
Resin injection pump details		
Image	Size Cartridge / Code	Type
	165 / 300ml	Manual
	345 / 380 / 400 / 410 / 420ml	Manual
	165 / 300 / 345 / 380 / 400 / 410 / 420ml 7.4v Tool	Battery
	165 / 300 / 380 / 400 / 410 / 420ml	Drill Adaptor
	380 / 400 / 410 / 420 / 825ml	Pneumatic


HOBSON ENGINEERING VINYLESTER V401

Intended use – data




Annex B3

of European
Technical Assessment
ETA-24/0507




Table B3 - parameters: drilling, hole cleaning and installation**Instructions for use – Hammer drilling (HD) and Compressed air drilling (CD)****Bore hole drilling**

	Drill hole in the substrate to the required embedment depth using the appropriately sized carbide drill bit.
---	--

Bore hole cleaning Just before setting an anchor, the bore hole must be free of dust and debris.**a) Manual air cleaning (MAC) for all bore hole diameters $d_o \leq 24\text{mm}$ and bore hole depth $h_o \leq 10d$**

	X 4	The manual pump shall be used for blowing out bore holes up to diameters $d_o \leq 24\text{mm}$ and embedment depths up to $h_{ef} \leq 10d$. Blow out at least 4 times from the back of the bore hole, using an extension if needed.
	X 4	Brush 4 times with the specified brush size (see Table B1) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it.
	X 4	Blow out again with manual pump at least 4 times.

b) Compressed air cleaning (CAC) for all bore hole diameters d_o and all bore hole depths

	X 2	Blow 2 times from the back of the hole (if needed with a nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m^3/h).
	X 2	Brush 2 times with the specified brush size (see Table B1) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it.
	X 2	Blow out again with compressed air at least 2 times.

HOBSON ENGINEERING VINYLESTER V401

Procedure (1)

Annex B3of European
Technical Assessment
ETA-24/0507

Instructions for use – Hollow drill bits for dust free drilling

Bore hole drilling and cleaning

Select a suitable hollow drill bit (see Table B1) and install it into the hammer drilling machine. Connect the dust extraction system to the aperture in the hollow drill bit. (e.g.: **Bosch®** system) Drill the hole to the required embedment depth with the hammer drill set in rotation-hammer mode and with the dust extraction system working permanently at full power.

Bore hole cleaning: Manual cleaning is not necessary when using the self-cleaning drilling method.

Table B4 - parameters: After cleaning injection and installation of the stud/rebar

	Remove the threaded cap from the cartridge. Cut open the foil bag if necessary. (Chubpack cartridges).
	Tightly attach the mixing nozzle. Do not modify the mixer in any way. Make sure the mixing element is inside the mixer. Use only the supplied mixer.
	Insert the cartridge into the dispenser gun.
	Discard the initial trigger pulls of adhesive. Depending on the size of the cartridge, an initial amount of adhesive mix must be discarded. Each time when the mixer is changed, a new discard of waste is needed until the colour is homogeneous. Discard quantities are 10 cm for all cartridges
	Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull. Fill holes approximately 2/3 full, to ensure that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment depth.
	Before use, verify that the threaded rod is dry and free of contaminants. Install the threaded rod to the required embedment depth during the open gel time t_{gel} has elapsed. The working time t_{gel} is given in Table B2.
	The anchor can be loaded after the required curing time t_{cure} (see Table B2). The applied torque shall not exceed the values T_{max} given in Table A1.

HOBSON ENGINEERING VINYLESTER V401

Procedure (2)

Annex B4

of European
Technical Assessment
ETA-24/0507

Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Size			M8	M10	M12	M16	M20	M24	
Cross section area	A_s	[mm ²]	36.6	58	84.3	157	245	353	
Characteristic tension resistance, Steel failure									
Steel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	
Steel, Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	
Steel, Property class 8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	
Steel, Property class 10.9	$N_{Rk,s}$	[kN]	37	58	84	157	245	353	
Steel, Property class 12.9	$N_{Rk,s}$	[kN]	44	70	101	188	294	424	
Stainless steel A2, A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	
Stainless steel A2, A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	
Stainless steel A4 and HCR, Property class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	
Characteristic tension resistance, Partial factor									
Steel, Property class 4.6 and 5.6	$\gamma_{Ms,N}^{1)}$	[-]				2,0			
Steel, Property class 4.8, 5.8 and 8.8	$\gamma_{Ms,N}^{1)}$	[-]				1,5			
Steel, Property class 10.9 and 12.9	$\gamma_{Ms,N}^{1)}$	[-]				1,4			
Stainless steel A2, A4 and HCR, Property class 50	$\gamma_{Ms,N}^{1)}$	[-]				2,86			
Stainless steel A2, A4 and HCR, Property class 70	$\gamma_{Ms,N}^{1)}$	[-]				1,87			
Stainless steel A4 and HCR, Property class 80	$\gamma_{Ms,N}^{1)}$	[-]				1,6			
Characteristic shear resistance, Steel failure									
Without lever arm	Steel, Property class 4.6 and 4.8	$V_{Rk,s}^0$	[kN]	7	12	17	31	49	71
	Steel, Property class 5.6 and 5.8	$V_{Rk,s}^0$	[kN]	9	15	21	39	61	88
	Steel, Property class 8.8	$V_{Rk,s}^0$	[kN]	15	23	34	63	98	141
	Steel, Property class 10.9	$V_{Rk,s}^0$	[kN]	18	29	42	79	123	177
	Steel, Property class 12.9	$V_{Rk,s}^0$	[kN]	22	35	51	94	147	212
	Stainless steel A2, A4 and HCR, Property class 50	$V_{Rk,s}^0$	[kN]	9	15	21	39	61	88
	Stainless steel A2, A4 and HCR, Property class 70	$V_{Rk,s}^0$	[kN]	13	20	30	55	86	124
	Stainless steel A4 and HCR, Property class 80	$V_{Rk,s}^0$	[kN]	15	23	34	63	98	141
With lever arm	Steel, Property class 4.6 and 4.8	$M_{Rk,s}^0$	[Nm]	15	30	52	133	260	449
	Steel, Property class 5.6 and 5.8	$M_{Rk,s}^0$	[Nm]	19	37	65	166	324	560
	Steel, Property class 8.8	$M_{Rk,s}^0$	[Nm]	30	60	105	266	519	896
	Steel, Property class 10.9	$M_{Rk,s}^0$	[Nm]	37	75	131	333	649	1123
	Steel, Property class 12.9	$M_{Rk,s}^0$	[Nm]	45	90	157	400	778	1347
	Stainless steel A2, A4 and HCR, Property class 50	$M_{Rk,s}^0$	[Nm]	19	37	66	167	325	561
	Stainless steel A2, A4 and HCR, Property class 70	$M_{Rk,s}^0$	[Nm]	26	52	92	232	454	784
	Stainless steel A4 and HCR, Property class 80	$M_{Rk,s}^0$	[Nm]	30	59	105	266	519	896
Characteristic shear resistance, Partial factor									
Steel, Property class 4.6 and 5.6	$\gamma_{Ms,V}^{1)}$	[-]				1,67			
Steel, Property class 4.8, 5.8 and 8.8	$\gamma_{Ms,V}^{1)}$	[-]				1,25			
Steel, Property class 10.9 and 12.9	$\gamma_{Ms,V}^{1)}$	[-]				1,50			
Stainless steel A2, A4 and HCR, Property class 50	$\gamma_{Ms,V}^{1)}$	[-]				2,38			
Stainless steel A2, A4 and HCR, Property class 70	$\gamma_{Ms,V}^{1)}$	[-]				1,56			
Stainless steel A4 and HCR, Property class 80	$\gamma_{Ms,V}^{1)}$	[-]				1,33			

¹⁾ in absence of national regulation

HOBSON ENGINEERING VINYLESTER V401	Annex C1 of European Technical Assessment ETA-24/0507
Performance for static and quasi-static loads: Resistances	

Table C2: Characteristic values of tension loads under static and quasi-static for threaded rods for 50 and 100 years working life for hammer/compressed air drilling and 50 years working life for the dust free drilling system

Anchor size threaded rod	M8	M10	M12	M16	M20	M24		
Steel failure								
Characteristic tension resistance	$N_{Rk,s}$	[kN]	see Table C1					
Partial factor	$\gamma_{Ms,N}$	[-]	see Table C1					
Combined Pull-out and Concrete cone failure²⁾								
Characteristic bond resistance in non-cracked and cracked concrete C20/25 – dry or wet concrete for hammer drilling (HD) and CD								
Temperature range 40°C/24°C non-cracked concrete	$\tau_{Rk,ucr}$	[N/mm ²]	10,7	10,3	10,0	9,5	9,1	8,8
Temperature range 40°C/24°C cracked concrete	$\tau_{Rk,cr}$	[N/mm ²]	3,4	3,5	3,6	3,6	3,6	3,5
Partial safety factor – dry or wet concrete	γ_{inst}	[-]	1,2			1,4		
Characteristic bond resistance in non-cracked concrete C20/25 – flooded holes for hammer drilling (HD)								
Temperature range 40°C/24°C non-cracked concrete	$\tau_{Rk,ucr}$	[N/mm ²]	10,7	10,3	10,0	9,5	8,8	7,8
Temperature range 40°C/24°C cracked concrete	$\tau_{Rk,cr}$	[N/mm ²]	3,4	3,5	3,6	3,6	3,6	3,4
Partial safety factor – flooded holes	γ_{inst}	[-]	1,2			1,4		
Characteristic bond resistance in non-cracked concrete C20/25 – dry or wet concrete for hollow drill bits (HDB) – dust free system								
Temperature range 40°C/24°C non-cracked concrete	$\tau_{Rk,ucr}$	[N/mm ²]	6,8	7,1	7,4	7,9	8,2	8,6
Temperature range 40°C/24°C cracked concrete	$\tau_{Rk,cr}$	[N/mm ²]	3,6	3,7	3,8	3,6	3,3	3,4
Partial safety factor – dry or wet concrete	γ_{inst}	[-]	1,2					1,4
Increasing factor for $\tau_{Rk,ucr}$ in non-cracked for hammer drilling	ψ_c	C30/37	1,08					1,00
		C40/50	1,15					1,00
		C50/60	1,20					1,00
Increasing factor for $\tau_{Rk,cr}$ in cracked concrete for hammer drilling	ψ_c	C30/37	1,08	1,00				
		C40/50	1,15	1,00				
		C50/60	1,20	1,00				
Increasing factor for $\tau_{Rk,ucr}$ in non-cracked concrete for hollow drilling	ψ_c	C30/37	1,00					1,00
		C40/50	1,00					1,00
		C50/60	1,00					1,00
Increasing factor for $\tau_{Rk,cr}$ in cracked concrete for hollow drilling	ψ_c	C30/37	1,20	1,00				
		C40/50	1,36	1,00				
		C50/60	1,50	1,00				
Reduction factor in cracked or non-cracked concrete C20/25	$\psi_{sus}^0 = \psi_{sus,100}^0$	[-]	0,813					
Factor for determination of the concrete cone failure	$k_{ucr,N}$	[-]	11,0 (based on concrete cylinder strength f_{ck})					
Factor for determination of the concrete cone failure	$k_{cr,N}$	[-]	7,7					
Edge distance for concrete cone failure	$c_{cr,N}$	[mm]	1,5 h_{ef}					
Axial distance for concrete cone failure	$s_{cr,N}$	[mm]	2 $c_{cr,N}$					

HOBSON ENGINEERING VINYLESTER V401

Performance for static and quasi-static tension actions

Annex C2
of European
Technical Assessment
ETA-24/0507

Table C2 : continuation

Splitting failure ²⁾			
Edge distance $c_{cr,sp}$ [mm] for	$h / h_{ef}^{4)} \geq 2,0$	1,0 h_{ef}	
	$2,0 > h / h_{ef}^{4)} > 1,3$	3 h_{ef} - 1 h	
	$h / h_{ef}^{4)} \leq 1,3$	1,7 h_{ef}	
Spacing	$s_{cr,sp}$	[mm]	2 $c_{cr,sp}$

¹⁾ In absence of national regulations³⁾ Explanations, see annex B1²⁾ Calculation of concrete and splitting, see annex B1⁴⁾ h concrete member thickness, h_{ef} effective anchorage depth**Table C3: Displacements under tension load**

Hobson Engineering Vinylester V401 with threaded rods	M8	M10	M12	M16	M20	M24
With Hammer drilling (HD) or compressed air drilling (CD)						
Temperature range a ⁵⁾ : 40°C / 24°C						
Displacement δ_{N0} [mm/(N/mm ²)]	0,11	0,11	0,10	0,11	0,12	0,10
Displacement $\delta_{N\infty}$ [mm/(N/mm ²)]	0,28	0,18	0,82	0,76	0,22	0,30
Hobson Engineering Vinylester V401 with threaded rods	M8	M10	M12	M16	M20	M24
for Hollow drilling HDB (dust-free system)						
Temperature range a ⁵⁾ : 40°C / 24°C						
Displacement δ_{N0} [mm/(N/mm ²)]	0,10	0,12	0,15	0,14	0,14	0,13
Displacement $\delta_{N\infty}$ [mm/(N/mm ²)]	0,49	0,19	0,38	0,52	0,14	0,19

⁵⁾ Explanation see annex B1**Table C4: Displacements under shear load for all types of drilling for threaded rods**

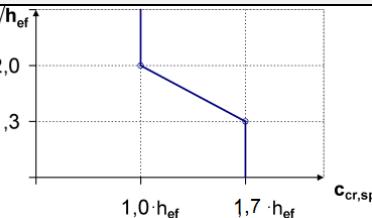
Hobson Engineering Vinylester V401 with threaded rods	M8	M10	M12	M16	M20	M24
Displacement δ_{v0} [mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03
Displacement $\delta_{v\infty}$ [mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05

HOBSON ENGINEERING VINYLESTER V401

Performance for static and quasi-static loads: Displacements

Annex C3
of European
Technical Assessment
ETA-24/0507

Table C5: Characteristic values for steel tension resistance and tension load values for rebar for 50 years of working life


¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

²⁾ in absence of national regulation

³⁾ Calculation of concrete and splitting, see annex B1

⁴⁾ Explanations, see annex B1

⁵⁾ h concrete member thickness, h_{ef} effective anchorage depth

Spacing

S_{cr,sp} [mm]

Page 10

1) f_{uk} shall be ta

$$2,0 > h / h_{ef}^{5)} > 1,3$$

$$3 h_{\text{ef}} - 1$$

2) in absence of

specifications of regulation

Ring bars

3) Calculation of

and splitting, see annex

1

2 C_{cr,sp}

HOBSON ENGINEERING VINYLESTER V401

Performance for static and quasi-static loads: Resistances

Annex C4 of European Technical Assessment ETA-24/0507

Table C6: Displacements under tension load for rebar

Hobson Engineering Vinylester V401 with rebar for hammer drilling (HD) and CD	φ 8	φ 10	φ 12	φ 14	φ 16	φ 20	φ 24/ φ 25
Temperature range a⁴⁾: 40°C / 24°C							
Displacement δ_{N0} [mm/(N/mm ²)]	0,03	0,03	0,04	0,04	0,07	0,07	0,10
Displacement $\delta_{N\infty}$ [mm/(N/mm ²)]	0,11	0,11	0,15	0,21	0,26	0,26	0,38
Hobson Engineering Vinylester V401 with rebar for hollow drilling dust free system (HDB)							
Temperature range a⁴⁾: 40°C / 24°C							
Displacement δ_{N0} [mm/(N/mm ²)]	0,16	0,10	0,03	0,03	0,04	0,04	0,04
Displacement $\delta_{N\infty}$ [mm/(N/mm ²)]	0,75	0,45	0,15	0,16	0,17	0,18	0,19

Table C7: Characteristic steel shear resistance for rebar

Hobson Engineering Vinylester V401 with rebar	φ 8	φ 10	φ 12	φ 14	φ 16	φ 20	φ 25
Steel failure without lever arm							
Characteristic shear resistance $V_{Rk,s}$ [kN]							0,50 · A _s · f _{uk} ¹⁾
Cross section area A_s [mm ²]	50	79	113	154	201	314	491
Partial safety factor $\gamma_{Ms,N}^{2)}$ [-]							1,5
Steel failure with lever arm							
Characteristic bending moment $M_{Rk,s}^0$ [Nm]							1,2 · W _{el} · f _{uk} ¹⁾
Elastic section modulus W_{el} [Nm]	50	98	170	269	402	785	1534
Partial safety factor $\gamma_{Ms,N}^{2)}$ [-]							1,5
Concrete prayout failure							
Factor k_8 [-]			1,0				for $h_{ef} < 60\text{mm}$
			2,0				for $h_{ef} \geq 60\text{mm}$
Partial safety factor γ_{MC} [-]							1,5
Concrete edge failure							
Partial safety factor $\gamma_{Mc}^{1)}$ [-]							1,5

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars²⁾ In absence of national regulations**Table C8: Displacements under shear load for rebar**

Hobson Engineering Vinylester V401 with rebar	φ 8	φ 10	φ 12	φ 14	φ 16	φ 20	φ 25
Displacement δ_{v0} [mm/kN]	0,05	0,05	0,05	0,04	0,04	0,04	0,03
Displacement $\delta_{v\infty}$ [mm/kN]	0,08	0,08	0,07	0,06	0,06	0,05	0,05

HOBSON ENGINEERING VINYLESTER V401

Performance for static and quasi-static loads: Resistances

Annex C5
of European
Technical Assessment
ETA-24/0507

Table C9: Resistance to fire

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Resistance to fire	No performance assessed

Table C10: Reaction to fire

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Reaction to fire	In the final application, the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not contribute to fire growth or to the fully developed fire and they have no influence on the smoke hazard.

HOBSON ENGINEERING VINYLESTER V401

Performance for exposure to fire

Annex C6
of European
Technical Assessment
ETA-24/0507