

HOBSON XCHEM™ H501

HYBRID XCHEM™ PRO

ETA 24/0513 (07/06/2024)

Option 1[†]

Seismic C1/C2

DOC Link 0513

† Suitable for use in Cracked and Non-Cracked Concrete.

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet ww.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-24/0513 of 2024/06/07

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

Hobson Engineering Hybrid H501

Product family to which the above construction product belongs:

Bonded injection type anchor for use in concrete

Manufacturer:

Hobson Engineering Company Pty Ltd 10 Clay Place Eastern Creek NSW 2766 Australia

Tel. +61 2 8818 0288

Internet www.hobson.com.au

Plant 5

Manufacturing plant:

This European Technical Assessment contains:

23 pages including 18 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

EAD 330499-01-0601, "Bonded fasteners for use in concrete"

This version replaces:

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The Hobson Engineering Hybrid H501 for concrete is a bonded anchor consisting of a cartridge with Hobson Engineering injection mortar and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex C.

Safety in case of fire (BWR 2):

Anchorages satisfy requirements for Class A1.

No performance is assessed for resistance to fire.

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance assessed

Other Basic Requirements are not relevant.

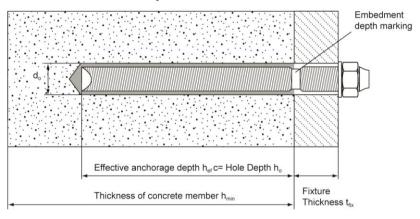
3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with EAD 330499-01-0601, "Bonded fasteners for use in concrete" and EOTA TR 049, "Post-installed fasteners in concrete under seismic action".

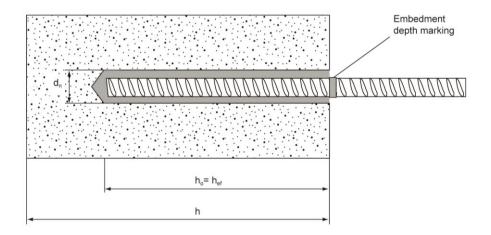
4 Assessment and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.


5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking


Issued in Copenhagen on 2024-06-07 by

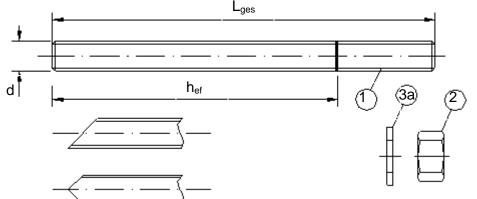
Thomas Bruun Managing Director, ETA-Danmark

Installation threaded rod M8 up to M30

Installation reinforcing bar Ø8 up to Ø32

 t_{fix} = thickness of fixture

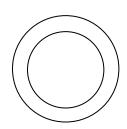
hef = effective anchorage depth

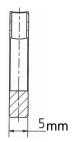

 h_0 = depth of drill hole

 h_{min} = minimum thickness of member

Hobson Engineering Hybrid H501 Injection System for concrete	Annex A1
Product description	
Installed condition	

Cartridge: Hobson Engineering Hybrid H501 A) Foil Bag Cartridge 165ml, 300ml. B) Coaxial Cartridge 380ml / 400 ml / 410 ml / 420ml Side by Side Cartridge 345ml, 825ml C) Cartridge Print : Hobson Engineering Hybrid H501 Including - Installation procedure, Production Batch code, Expiry Date, Storage conditions, Health & Safety warning, Gel & Cure time according to temperatures. A) B) C) **Mixer** Hobson Engineering Hybrid H501 Injection System for concrete Annex A2 **Product description** Injection system


Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut



Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Filling washer and mixer reduction nozzle for filling the annular gap between anchor rod and fixture

Hobson Engineering Hybrid H501 Injection System for concrete

Product description

Threaded rod and filling washer

Annex A3

	Designation	Material		
inc	el, zinc plated (Steel acc. to EN 10 plated ≥ 5 μm acc. to EN ISO 4042: SO 10684:2004+AC:2009 or sherard	1999 odr hot-dip galvan	ised ≥	40 μm acc. to EN ISO 1461:2009 and
		<u>'</u>	4.6	f_{uk} =400 N/mm ² ; f_{yk} =240 N/mm ² ; $A_5 > 8\%^4$ fracture elongation
			4.8	$f_{uk}=400 \text{ N/mm}^2$; $f_{yk}=320 \text{ N/mm}^2$; $A_5 > 8\%^{4)}$ fracture elongation
		Property class	5.6	f_{uk} =500 N/mm ² ; f_{yk} =300 N/mm ² ; $A_5 > 8\%^4$ fracture elongation
1	Anchor rod	acc. to EN ISO 898-1:2013	5.8	$f_{uk}=500 \text{ N/mm}^2$; $f_{vk}=400 \text{ N/mm}^2$; $A_5 > 8\%^{4}$ fracture elongation
		EN 130 696-1.2013	8.8	f_{uk} =800 N/mm ² ; f_{yk} =640 N/mm ² ; $A_5 > 8\%^{4}$ fracture elongation
			10.9	f_{uk} =1000 N/mm ² ; f_{yk} =900 N/mm ² ; $A_5 > 8\%^4$ fracture elongation
			4	for anchor rod class 4.6 or 4.8
		Property class	5	for anchor rod class 5.6 or 5.8
2	Hexagon nut	acc. to	8	for anchor rod class 8.8
		EN ISO 898-2:2012	10	for anchor rod class 10.9
3a	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Steel, zinc plated, hot-	dip ga	lvanised or sherardized
tai	Filling washer nless steel A2 (Material 1.4301 / 1			
tai nd	Filling washer nless steel A2 (Material 1.4301 / 1 Stainless steel A4 (Material 1.440	1 / 1.4404 / 1.4571 / 1.4 Property class	5 0	r 1.4578, acc. to EN 10088-1:2014) f _{uk} =500 N/mm²; f _{yk} =210 N/mm²; A ₅ >8% ⁴⁾ fracture elongation
tai	Filling washer nless steel A2 (Material 1.4301 / 1	1 / 1.4404 / 1.4571 / 1.4	50 70	r 1.4578, acc. to EN 10088-1:2014) $f_{uk}=500 \text{ N/mm}^2; \ f_{yk}=210 \text{ N/mm}^2; \ A_5>8\%^4) \ \text{fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; \ f_{yk}=450 \text{ N/mm}^2; \ A_5>8\%^4) \ \text{fracture elongation}$
tai nd	Filling washer nless steel A2 (Material 1.4301 / 1 Stainless steel A4 (Material 1.440	1 / 1.4404 / 1.4571 / 1.4 Property class acc. to EN ISO 3506-1:2009	50 70 80	r 1.4578, acc. to EN 10088-1:2014) $f_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 210 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 700 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 800 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 800 \text{ N/mm}^2; \ A_5 > 8\%^4 \text{ N/mm}^2; \ A_5 > 8\%^4$
tai nd	Filling washer nless steel A2 (Material 1.4301 / 1 Stainless steel A4 (Material 1.440 Anchor rod ¹⁾²⁾	1 / 1.4404 / 1.4571 / 1.4 Property class acc. to	50 70 80 50	r 1.4578, acc. to EN 10088-1:2014) $f_{uk}{=}500 \text{ N/mm}^2; \ f_{yk}{=}210 \text{ N/mm}^2; \ A_5{>}8\%^4) \ \text{fracture elongation}} \\ f_{uk}{=}700 \text{ N/mm}^2; \ f_{yk}{=}450 \text{ N/mm}^2; \ A_5{>}8\%^4) \ \text{fracture elongation}} \\ f_{uk}{=}800 \text{ N/mm}^2; \ f_{yk}{=}600 \text{ N/mm}^2; \ A_5{>}8\%^4) \ \text{fracture elongation}} \\ \text{for anchor rod class } 50$
tai nd 1	Filling washer nless steel A2 (Material 1.4301 / 1 Stainless steel A4 (Material 1.440	1 / 1.4404 / 1.4571 / 1.4 Property class acc. to EN ISO 3506-1:2009 Property class	50 70 80	r 1.4578, acc. to EN 10088-1:2014) $f_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 210 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 700 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 600 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 800 \text{ N/mm}^2; \ A_5 > 8\%^4) \ \text{fracture elongation} \\ f_{uk} = 800 \text{ N/mm}^2; \ f_{yk} = 800 \text{ N/mm}^2; \ A_5 > 8\%^4 \text{ N/mm}^2; \ A_5 > 8\%^4$
1 2	Filling washer nless steel A2 (Material 1.4301 / 1 Stainless steel A4 (Material 1.440 Anchor rod ¹⁾²⁾ Hexagon nut ¹⁾²⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1	50 70 80 50 70 80 50 70 80	r 1.4578, acc. to EN 10088-1:2014) $f_{uk}{=}500 \text{ N/mm}^2; \ f_{yk}{=}210 \text{ N/mm}^2; \ A_5{>}8\%^4) \ \text{fracture elongation} \\ f_{uk}{=}700 \text{ N/mm}^2; \ f_{yk}{=}450 \text{ N/mm}^2; \ A_5{>}8\%^4) \ \text{fracture elongatio} \\ f_{uk}{=}800 \text{ N/mm}^2; \ f_{yk}{=}600 \text{ N/mm}^2; \ A_5{>}8\%^4) \ \text{fracture elongatio} \\ \text{for anchor rod class 50} \\ \text{for anchor rod class 70}$
1 2 3a 3b	Filling washer nless steel A2 (Material 1.4301 / 1 Stainless steel A4 (Material 1.440 Anchor rod ¹⁾²⁾ Hexagon nut ¹⁾²⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ³⁾	Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1	50 70 80 50 70 80 50 70 80 1.4303	r 1.4578, acc. to EN 10088-1:2014) $f_{uk}{=}500 \text{ N/mm}^2; \ f_{yk}{=}210 \text{ N/mm}^2; \ A_5{>}8\%^4) \ \text{fracture elongation}} \\ f_{uk}{=}700 \text{ N/mm}^2; \ f_{yk}{=}450 \text{ N/mm}^2; \ A_5{>}8\%^4) \ \text{fracture elongation}} \\ f_{uk}{=}800 \text{ N/mm}^2; \ f_{yk}{=}600 \text{ N/mm}^2; \ A_5{>}8\%^4) \ \text{fracture elongation}} \\ \text{for anchor rod class } 50 \\ \text{for anchor rod class } 70 \\ \text{for anchor rod class } 80 \\ \\ / \ 1.4307 \ / \ 1.4567 \ \text{ or } 1.4541, \ \text{EN } 10088-1:2014} \\ / \ 1.4571 \ / \ 1.4362 \ \text{ or } 1.4578, \ \text{EN } 10088-1:2014} \\ $
1 2 3a	Filling washer nless steel A2 (Material 1.4301 / 1 Stainless steel A4 (Material 1.440 Anchor rod ¹⁾²⁾ Hexagon nut ¹⁾²⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	1 / 1.4404 / 1.4571 / 1.4 Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1.44: Material 1.4401 / 1.45: Material 1.4529 or 1.4565, acc.	50 70 80 50 70 80 70 80 1.4303 1.4404	r 1.4578, acc. to EN 10088-1:2014) $f_{uk}=500 \text{ N/mm}^2; \ f_{yk}=210 \text{ N/mm}^2; \ A_5>8\%^4) \ \text{fracture elongation}$ $f_{uk}=700 \text{ N/mm}^2; \ f_{yk}=450 \text{ N/mm}^2; \ A_5>8\%^4) \ \text{fracture elongation}$ $f_{uk}=800 \text{ N/mm}^2; \ f_{yk}=600 \text{ N/mm}^2; \ A_5>8\%^4) \ \text{fracture elongation}$ for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 $/ \ 1.4307 \ / \ 1.4567 \ \text{ or } 1.4541, \ \text{EN } 10088-1:2014$ $/ \ 1.4571 \ / \ 1.4362 \ \text{ or } 1.4578, \ \text{EN } 10088-1:2014$ $/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
taii nd 1 2 3a	Filling washer nless steel A2 (Material 1.4301 / 1 Stainless steel A4 (Material 1.440 Anchor rod ¹⁾²⁾ Hexagon nut ¹⁾²⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ³⁾	Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1	50 70 80 50 70 80 50 70 80 1.4303	r 1.4578, acc. to EN 10088-1:2014) $f_{uk}=500 \text{ N/mm}^2; f_{yk}=210 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ for anchor rod class 50 \\ for anchor rod class 70 \\ for anchor rod class 80 \\ / 1.4307 / 1.4567 \text{ or } 1.4541, \text{ EN } 10088-1:2014 \\ / 1.4571 / 1.4362 \text{ or } 1.4578, \text{ EN } 10088-1:2014 \\ \hline \text{DEN } 10088-1:2014) \\ f_{uk}=500 \text{ N/mm}^2; f_{yk}=210 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ }$
taiind nd 1 2 3a igh	Filling washer nless steel A2 (Material 1.4301 / 1 Stainless steel A4 (Material 1.440 Anchor rod ¹⁾²⁾ Hexagon nut ¹⁾²⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ³⁾ n corrosion resistance steel (Material 1.440	Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class	50 70 80 50 70 80 80 1.4303 1.4404 acc. to	r 1.4578, acc. to EN 10088-1:2014) $f_{uk}=500 \text{ N/mm}^2; f_{yk}=210 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongatio} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongatio} \\ for anchor rod class 50 \\ for anchor rod class 70 \\ for anchor rod class 80 \\ / 1.4307 / 1.4567 \text{ or } 1.4541, \text{ EN } 10088-1:2014 \\ / 1.4571 / 1.4362 \text{ or } 1.4578, \text{ EN } 10088-1:2014 \\ \hline \text{DEN } 10088-1: 2014) \\ f_{uk}=500 \text{ N/mm}^2; f_{yk}=210 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ \hline $
taind 1 2 3a igh	Filling washer nless steel A2 (Material 1.4301 / 1 Stainless steel A4 (Material 1.440 Anchor rod ¹⁾²⁾ Hexagon nut ¹⁾²⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ³⁾ n corrosion resistance steel (Material 1.440	Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009	50 70 80 50 70 80 80 1.4303 1.4404 acc. to	r 1.4578, acc. to EN 10088-1:2014) $f_{uk}=500 \text{ N/mm}^2; f_{yk}=210 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ for anchor rod class 50 \\ for anchor rod class 70 \\ for anchor rod class 80 \\ / 1.4307 / 1.4567 \text{ or } 1.4541, \text{ EN } 10088-1:2014 \\ / 1.4571 / 1.4362 \text{ or } 1.4578, \text{ EN } 10088-1:2014 \\ / 1.4570 \text{ N/mm}^2; f_{yk}=210 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=500 \text{ N/mm}^2; f_{yk}=210 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; A_5>8\%^4 \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; A_5>8\%$
tainnd 1 2 3a igh	Filling washer nless steel A2 (Material 1.4301 / 1 Stainless steel A4 (Material 1.440 Anchor rod ¹⁾²⁾ Hexagon nut ¹⁾²⁾ Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ³⁾ n corrosion resistance steel (Material 1.440	Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to En ISO 3506-1:2009	50 70 80 50 70 80 50 70 80 1.4303 1.4404 50 70 80	r 1.4578, acc. to EN 10088-1:2014) $f_{uk}=500 \text{ N/mm}^2; f_{yk}=210 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongatio} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongatio} \\ for anchor rod class 50 \\ for anchor rod class 70 \\ for anchor rod class 80 \\ / 1.4307 / 1.4567 \text{ or } 1.4541, \text{ EN } 10088-1:2014 \\ / 1.4571 / 1.4362 \text{ or } 1.4578, \text{ EN } 10088-1:2014 \\ / DEN 10088-1: 2014) \\ f_{uk}=500 \text{ N/mm}^2; f_{yk}=210 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=800 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=800 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; f_{yk}=800 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} \\ f_{uk}=800 N$
1 2 3a igh	Filling washer nless steel A2 (Material 1.4301 / 1 Stainless steel A4 (Material 1.440 Anchor rod¹)2) Hexagon nut ¹)2) Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer³) a corrosion resistance steel (Material 1.440)	Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 A2: Material 1.4301 / 1 A4: Material 1.4401 / 1 Property class acc. to EN ISO 3506-1:2009 Property class acc. to EN ISO 3506-1:2009 Property class	50 70 80 50 70 80 50 70 80 1.4303 1.4404 50 70 80 50	r 1.4578, acc. to EN 10088-1:2014) $f_{uk}=500 \text{ N/mm}^2; f_{yk}=210 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=700 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=800 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} for anchor rod class 50 for anchor rod class 70 for anchor rod class 80} f_{uk}=300 \text{ N/mm}^2; f_{uk}=300 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=210 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=450 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=600 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=300 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=300 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=300 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=300 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=300 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=300 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=300 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 \text{ N/mm}^2; f_{yk}=300 \text{ N/mm}^2; A_5>8\%^4) \text{ fracture elongation} f_{uk}=300 $

³⁾ Filling washer only with stainless steel A4

Hobson Engineering Hybrid H501 Injection System for concrete	
	Annex A4
But had the adults	
Product description	
Materials threaded rod	

 $^{^{4)}}$ For seismic performance category C2, $A_{5} > 19\%$ fracture elongation

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

Embedment depth marking

Effective anchorage depth h_{ef}

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

Part	Designation	Material
Reinf	orcing bars	
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Rebar class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Product description

Materials reinforcing bar

Annex A5

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12, M16 and M20

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The Anchorages are designed in accordance to:
 - FprEN 1992-4:2017 and Technical Report TR055
 - Anchorages under seismic load are designed in accordance with EOTA Technical Report TR045

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Hobson Engineering Hybrid H501 Injection System for concrete	Annex B1
Intended Use Specifications	Ailliex D1

Table B1: Installation parameters for threaded rod									
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective analysis of death	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Minimum thickness of member h _{mi}		h _{ef} + 30) mm ≥ 1	00 mm			h _{ef} + 2d ₀		
Minimum spacing	Smin [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d_0 [mm] =	12	14	16	18	20	24	32	35	40
Effective anchorage depth	$h_{ef,min}$ [mm] =	60	60	70	75	80	90	100	112	128
	$h_{ef,max}$ [mm] =	160	200	240	280	320	400	500	580	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]] h _{ef} + 30 mm ≥ 100 mm					h _{ef} + 2d ₀)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Hobson Engineering Hybrid H501 Injection System for concrete	Annex B2
Intended Use Installation parameters	

Table B3: Parameter cleaning and setting tools

4	777777777777777777	8	tened (
Threaded Rod	Rebar	d₀ Drill bit - Ø HD, HDB, CA	d Brusi		d _{b,min} min. Brush - Ø	Piston plug	Installatio of	n directio piston plu	
(mm)	(mm)	(mm)		(mm)	(mm)		Û	\Rightarrow	仓
M8		10	66555	12	10,5	-	-	-	-
M10	8	12	66556	14	12,5	-	-	-	-
M12	10	14	66557	16	14,5	-	-	-	-
	12	16	65576	18	16,5	-	-	-	-
M16	14	18	66558	20	18,5	PL18			
	16	20	66559	22	20,5	PL20			
M20	20	24	66560	26	24,5	PL24	h (>	h _{ef} >	
M24		28	66561	30	28,5	PL28	h _{ef} >		all
M27	25	32	66563	34	32,5	PL32	250 mm	250 mm	
M30	28	35	66564	37	35,5	PL35			
	32	40	66566	41,5	40,5	PL40			

Push Pump

Drill bit diameter (d₀): 10 mm to 20 mm Drill hole depth (h_0) : < 10 d_{nom} Only in non-cracked concrete

CAC - Compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters

Piston plug for overhead or horizontal installation PL

Drill bit diameter (d₀): 18 mm to 40 mm

Steel Brush

Drill bit diameter (d₀): all diameters

Hobson Engineering Hybrid H501 Injection System for concrete	Annex B3
Intended Use Cleaning and setting tools	7 timox Bo

Instructions for use Bore hole drilling Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or B2,), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted. In case of aborted drill hole: the drill hole shall be filled with mortar Attention! Standing water in the bore hole must be removed before cleaning. Bore hole cleaning Just before setting an anchor, the bore hole must be free of dust and debris. MAC: Cleaning for bore hole diameter d₀ ≤ 20mm and bore hole depth h₀ ≤ 10d_{nom} (uncracked concrete only!) Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump 1) **X4** (Annex B3) a minimum of four times. Check brush diameter (Table B3). Brush the hole with an appropriate sized wire **X4** brush > d_b,min (Table B3) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used. Finally blow the hole clean again with a hand pump (Annex B3) a minimum of four times. **X4** ¹⁾It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to 10_{dnom} also in cracked concrete with hand-pump CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete Starting from the bottom or back of the bore hole, blow the hole clean with compressed air **X4** (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used. Check brush diameter (Table B3). Brush the hole with an appropriate sized wire brush $> d_{b,min}$ **X4** (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension must be used. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used. **X4** After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Hobson Engineering Hybrid H501 Injection System for concrete	Annex B4
Intended Use Installation instructions	

Instructions for use	
	Remove the threaded cap from the cartridge.
	Attach the supplied mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use if necessary. For every working interruption longer than the recommended working time (Table B4) as was for new cartridges, a new mixer shall be used.
	Insert the cartridge into the Hobson Engineering dispenser. Press the release trigger to retract the plunger and insert the cartridge neatly into the cradle without any distortion. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shape marked on the anchor rods.
×	Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.
	Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximate two-thirds with adhesive. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. Obserthe gel-/ working times given in Table B4.
	Piston Plugs and mixer nozzle extensions shall be used according to Table B3 for the following applications: • Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d0 ≥ 18 mm and embedment depth hef > 250mm • Overhead assembly (vertical upwards direction): Drill bit-Ø d0 ≥ 18 mm
h _{ef}	Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).
t _{cure} T _{inst}	Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4). After full curing, the add-on part can be installed with up to the max. torque (Table B1) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Hobson Engineering Hybrid H501 Injection System for concrete

Annex B5

Intended Use

Installation instructions (continuation)

Table B4: Maximum Working time and minimum curing time Hobson Engineering Hybrid H501

Concre	te temp	perature	Gelling- / working time	Minimum curing time in dry concrete ¹⁾
0 °C	to	+4°C	45 min	7 h
+5 °C	to	+9°C	25 min	2 h
+ 10 °C	to	+19°C	15 min	80 min
+ 20 °C	to	+29°C	6 min	45 min
+ 30 °C	to	+34°C	4 min	25 min
+ 35 °C	to	+39°C	2 min	20 min
	+ 40 °C		1,5 min	15 min
Cartride	ge temp	perature	+5°C to	+40°C

¹⁾ In wet concrete the curing time must be doubled.

Resin injection pump deta Image	Size Cartridge / Code	Туре
	165 / 300ml 165/300 ml 10:1	Manual
	345 / 380 / 400 / 410 / 420ml 420 ml 10:1 345 ml 10:1	Manual
	165 / 300 / 380 / 400 / 410 / 420ml 165/300 ml 380 / 400 / 410 / 420 ml 345 ml 7.4v Tool	Battery
	380 / 400 / 410 / 825ml 380 / 400 / 410 / 420 ml 825ml	Pneumatic

Hobson Engineering Hybrid H501 Injection System for concrete	Annex B6
Intended Use Curing time	7OX 20

Size				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Chara	acteristic tension resistance, Steel failure				ı	1			ı	1	
Steel,	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Steel,	Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Steel,	Property class 8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449
Steel,	Property class 10.9	$N_{Rk,s}$	[kN]	38	60	87	163	255	367	477	583
Stainle	ess steel A2, A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
Stainle	ess steel A2, A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
Stainle	ess steel A4 and HCR, Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-
Chara	acteristic tension resistance, Partial factor	L			ı	1			ı	1	
Steel,	Property class 4.6	γ _{Ms,N} 1)	[-]				2	:,0			
	Property class 4.8	γ _{Ms,N} 1)	[-]					,5			
	Property class 5.6	γ _{Ms,N} 1)	[-]					.,0			
	Property class 5.8, 8.8 and 10.9	γ _{Ms,N} 1)	[-]					,5			
	ess steel A2, A4 and HCR, Property class 50	γ _{Ms,N} 1)	[-]					86			
Stainless steel A2, A4 and HCR, Property class 70 γ _{Ms,N} 1) [-]											
Stainless steel A4 and HCR, Property class 80 $\gamma_{\text{Ms,N}}^{-1}$ [-]											
Chara	acteristic shear resistance, Steel failure	1,	1								
	Steel, Property class 4.6 and 4.8	$V_{Rk,s}^0$	[kN]	9	14	20	38	59	85	110	135
_	Steel, Property class 5.6 and 5.8	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Without lever arm	Steel, Property class 8.8	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
leve	Steel, Property class 10.9	V ⁰ _{Rk,s}	[kN]	19	30	43	81	127	183	238	224
nout	Stainless steel A2, A4 and HCR, Property class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
With	Stainless steel A2, A4 and HCR, Property class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124	-	-
	Stainless steel A4 and HCR, Property class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	-	-
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	112
arm	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	179
lever	Steel, Property class 10.9	M ⁰ _{Rk,s}	[Nm]	37	75	131	333	649	1123	1664	224
With le	Stainless steel A2, A4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	112
≥	Stainless steel A2, A4 and HCR, Property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-
	Stainless steel A4 and HCR, Property class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	-	-
Chara	acteristic shear resistance, Partial factor	,.	1	1	I	1			I	1	
	Property class 4.6	γ _{Ms,V} 1)	[-]				1.	67			
	Property class 4.8	γ _{Ms,V} 1)	[-]					25			
	Property class 5.6	γ _{Ms,V} 1)	[-]					67			
	Property class 5.8	γ _{Ms,V} 1)	[-]				-	25			
	Property class 8.8	γ _{Ms,V} 1)	[-]					25			
	Property class 10.9	γMs,V 1)	[-]					50			
	ess steel A2, A4 and HCR, Property class 50	γ _{Ms,V} 1)	[-]				-	38			
Stainless steel A2, A4 and HCR, Property class 70 $\gamma_{\text{Ms,V}}^{-1}$ [-] 1,56											
	ess steel A4 and HCR, Property class 80	γ _{Ms,V} 1)	[-]					33			
	1) in absence of national regulation	,o, t									
Нс	obson Engineering Hybrid H501 Injection	on System	for cor	crete	9			Δ	nne	x C1	

Anchor size threaded	ismic action (pe		_	M 8	M 10	M 12	M 16	M 20	M24	M27	M30		
Steel failure				I			I.				ı		
Characteristic tension i	esistance	N _{Rk,s}	[kN]				see Ta						
		$N_{Rk,s, C1} = N_{Rk,s, C2}$	[kN]				1,0 •	,-					
Partial factor		γ _{Ms,N}	[-]				see Ta	ble C1					
Combined pull-out an	d concrete failure												
Characteristic bond res	istance in non-cracked co	ncrete C20/25											
Temperature range I:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	10	12	12	12	12	11	10	9		
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	7,5	8,5	8,5	8,5			nce asses			
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5		
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5			nce asses			
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0		
120°C/72°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	4,0	5,0	5,0	5,0	No	Performa	nce asses	sed		
Characteristic bond res	sistance in cracked concre	te C20/25	1	1	1	1	T	ı	1	1			
		$ au_{Rk,cr}$	[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5		
Temperature range I:	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5		
40°C/24°C		τ _{Rk,C2}	[N/mm²]	-	-	2	2	2		-	<u> </u>		
	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5			nce asses			
		τ _{Rk,C1}	[N/mm²]	2,5	2,5	3,7	3,7	1		nce asses			
		τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5		
Temperature range II:	dry and wet concrete	T _{Rk,C1}	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1		
80°C/50°C		τ _{Rk,C2}	[N/mm²]	-	-	1.4	1.4	1.4		-	<u> </u>		
	flooded bore hole	τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,0	4,0			nce asses			
		T _{Rk,C1}	[N/mm²]	1,6	1,9	2,7	2,7	1		nce asses			
	de cardonal accessor	τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5		
Temperature range III:	dry and wet concrete	τ _{Rk,C1}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4		
120°C/72°C		τ _{Rk,C2}	[N/mm²]	-	- 2.5	1.1	1.1	1.1	- Df	<u> </u>			
	flooded bore hole	τ _{Rk,cr}	[N/mm²]	2,0	2,5	3,0	3,0			nce asses			
		τ _{Rk,C1} C25/30	[N/mm ²]	1,3	1,6	2,0	2,0	l .	Репогта	nce asses	sea		
		C25/30		1,02									
Increasing factors for c	oncrete	C35/45		1,07									
(only static or quasi-sta	tic actions)	C40/50		1,08									
Ψc		C45/55		1,09									
		C50/60						10					
Concrete cone failure	1	000/00					٠,	10					
Non-cracked concrete		k _{ucr.N}	[-]				11	0					
								•					
Cracked concrete		k _{cr,N}	[-]					,7					
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}					
Axial distance		S _{cr,N}	[mm]				2 0	cr,N					
Splitting													
	h/h _{ef} ≥ 2,0						1,0	h_{ef}					
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]				$2 \cdot h_{ef} \left(2, \right)$	$5 - \frac{h}{h_{ef}}$					
	h/h _{ef} ≤ 1,3	1					2,4	9 /					
Axial distance	1 - 3 - 10 - 1,0	S _{cr,Sp}	[mm]					cr,sp					
Installation factor		-u,sp											
(dry and wet concrete)		γinst	[-]	1,0 1,2									
Installation factor (flood	led bore hole)	γinst	[-]	1,4 No Performance assessed					sed				
Performances Characteristic value	es of tension loads unde ormance category C1 a	er static, quasi-s			oncret	e			Ann	ex C	2		

Table C3: Characteristic values seismic action (p						quasi-	static	actior	and		
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm											
	$V^0_{Rk,s}$	[kN]				see Ta	able C1				
Characteristic shear resistance	V _{Rk,s,C1}	[kN]	0,70 • V ⁰ _{Rk,s}								
	$V_{Rk,s,C2}$	[kN]	-	-	0,60 • V ⁰ _{Rk,s}	0,70 • V ⁰ _{Rk,s}	0,75 • V ⁰ _{Rk,s}	-	-	-	
Characteristic shear resistance for hot-dip galvanized commercial rods	$V_{Rk,s,C2}$	[kN]	- 0,35 • V ⁰ _{Rk,s}					-			
Partial factor	γ _{Ms,V}	[-]	see Table C1								
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	see Table C1								
Characteristic bending moment	$M^0_{Rk,s,eq}$	[Nm]			No Perfo	ormance I	Determine	ed (NPD)			
Partial factor	γ _{Ms,V}	[-]				see Ta	able C1				
Concrete pry-out failure											
Factor	k ₈	[-]				2	,0				
Installation factor	γinst	[-]				1	,0				
Concrete edge failure	<u>.</u>										
Effective length of fastener	I _f	[mm]	$I_{f} = min(h_{ef}, 8 d_{nom})$								
Outside diameter of fastener	d _{nom}	[mm]	8 10 12 16 20 24 27							30	
Installation factor	γ_{inst}	[-]		•	•	1	,0			,	
Factor for annular gap	α_{gap}	[-]				0,5 (1,0)1)				

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A3 is required

Hobson Engineering Hybrid H501 Injection System for concrete	Annex C3
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1 and C2)	7.111.01.00

Anchor size reinforcin	g bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure														
Characteristic tension re	esistance		$N_{Rk,s}$	[kN]					$A_s \cdot f_{uk}^{1)}$					
Ondracteristic terision it	SSISTATICC		$N_{Rk,s, eq}$	[kN]				1,	0 • A _s • f	uk 1)				
Cross section area			A_s	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor			γ _{Ms,N}	[-]					1,4 ²⁾					
Combined pull-out and	d concrete fai	lure												
Characteristic bond resi	stance in non-	cracked co	oncrete C20	/25										
Temperature range I:	dry and wet	concrete	τ _{Rk,ucr}	[N/mm ²]	10	12	12	12	12	12	11	10	8,5	
40°C/24°C	flooded bore	hole	$\tau_{Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,5	8,5	No	Performa	nce Asses	sed	
Temperature range II:	dry and wet	concrete	$\tau_{Rk,ucr}$	[N/mm ²]	7,5	9	9	9	9	9	8,0	7,0	6,0	
80°C/50°C	flooded bore	hole	$ au_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	No	Performa	nce Asses	ssed	
Temperature range III:	dry and wet	concrete	$\tau_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5	
120°C/72°C	flooded bore		$\tau_{Rk,ucr}$	[N/mm ²]	4,0	5,0	5,0	5,0	5,0	No	Performa	nce Asses	ssed	
Characteristic bond resi	stance in cracl	ked concre	te C20/25	T	1	1	1		1	1	ı	T		
	dry and wet	concrete	$\tau_{Rk,cr}$	[N/mm ²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5	
Temperature range I:			$\tau_{Rk,eq}$	[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5	
40°C/24°C	flooded bore	hole	τ _{Rk,cr}	[N/mm ²]	4,0	4,0	5,5	5,5	5,5			nce Asses		
			$\tau_{Rk,eq}$	[N/mm²]	2,5	2,5	3,7	3,7	3,7			nce Asses		
	dry and wet o	concrete	τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5	
Temperature range II: 80°C/50°C			$\tau_{Rk,eq}$	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1	
80°C/50°C	flooded bore	hole	τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,0	4,0	4,0			Determine		
			τ _{Rk,eq}	[N/mm²]	1,6	1,9	2,7	2,7	2,7		1	Determine	` .	
	dry and wet	concrete	$\tau_{Rk,cr}$	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5	
Temperature range III: 120°C/72°C			τ _{Rk,eq}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4	
	flooded bore hole		τ _{Rk,cr}	[N/mm²] [N/mm²]	2,0 1,3	2,5 1,6	3,0 2,0	3,0 2.0	3,0 2,0			Determine		
			τ _{Rk,eq}	5/30	1,3	1,0	2,0	2,0	1,02	No Peno	ormance	Determine	a (NPD	
				0/30 0/37					1,02					
Increasing factors for co	oncrete			5/45					1,04					
(only static or quasi-stat	tic actions)			0/40	1,07									
Ψc				5/55	1,09									
				0/60	1,10									
Concrete cone failure				5, 55					.,					
Non-cracked concrete			$k_{\text{ucr},N}$	[-]					11,0					
Cracked concrete			k _{cr,N}	[-]					7,7					
Edge distance				[mm]					1,5 h _{ef}					
			C _{cr,N}											
Axial distance			S _{cr,N}	[mm]					2 c _{cr,N}					
Splitting	T		T	T	1									
	h/h _{ef} ≥ 2,0								1,0 h _{ef}					
Edge distance	2,0> h/h _{ef} > 1	,3	C _{cr,sp}	[mm]	m] $2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$									
	h/h _{ef} ≤ 1,3				2,4 h _{ef}									
Axial distance			S _{cr,sp}	[mm]					2 c _{cr,sp}					
Installation factor (dry a	nd wet concret	e)	γinst	[-]	1,0					,2				
` •		Installation factor (flooded bore hole) γ_{ir}		[-]	, -	1	1,4		•			Determine	d (NDD	

Annex C4

Hobson Engineering Hybrid H501 Injection System for concrete

Characteristic values of tension loads under static, quasi-static action and

Performances

seismic action (performance category C1)

seismic action	i (periormanci	e caley		<u> </u>		1	1			1	
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	$V^0_{Rk,s}$	[kN]				0,5	50 · A _s ·	f _{uk} 1)			
Characteristic shear resistance	V _{Rk,s, eq}	[kN]	$0.35 \cdot A_s \cdot f_{uk}^{1)}$								
Cross section area	As	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]					1,52)				
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm	·										
Characteristic handing mamont	M ⁰ _{Rk,s}	[Nm]				1.2	2 · W _{el} ·	f _{uk} 1)			
Characteristic bending moment	M ⁰ _{Rk,s, eq}	[Nm]	No Performance Determined (NPD)								
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γMs,V	[-]					1,5 ²⁾				
Concrete pry-out failure		•									
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure	•	•	•								
Effective length of fastener	I _f	[mm]	I _f = min(h _{ef} , 8 d _{nom})								
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]					1,0				
Factor for annular gap	$lpha_{ extsf{gap}}$	[-]				(0,5 (1,0)	3)			

Hobson Engineering Hybrid H501 Injection System for concrete	Annex C5
Performances Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)	

l I I

1) f_{uk} shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A3 is required

Table C6: Di	splaceme	ents under tens	ion load ¹⁾	(threa	aded ro	od)						
Anchor size thread	ded rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30		
Non-cracked conc	rete C20/25		·									
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049		
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071		
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Cracked concrete	C20/25											
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,090		0,070							
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,1	05	0,105							
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219	0,170							
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245				
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70				
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,2	255			0,2	245				
Seismic Category	C2		•		•							
All temperature	$\delta_{\text{N,eq (DLS)}}$	[mm]	-	-	0,11	0,19	0,62	-	-	-		
ranges	δ N,eq (ULS)	[mm]	-	-	0,29	0,62	0,94	-	-	-		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor } \cdot \tau; \hspace{1cm} \tau\text{: action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C7: Displacements under shear load¹⁾ (threaded rod)

Table C7.	Displaceille	ents under snea	i ioau / (i	meau	eu rou)				
Anchor size thre	M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
For non-cracked	l concrete C2	0/25								
All temperature	δ _{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
For cracked con	crete C20/25									
All temperature ranges	δ _{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
	δ _{V∞} -factor	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10
Seismic Categor	ry C2									
All temperature ranges	δ V,eq (DLS)	[mm]	-	-	2,99	3,76	5,19	-	-	-
	δv,eq (ULS)	[mm]	-	-	5,17	6,32	10,26	-	-	-

¹⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot \overset{,}{V};$

Hobson Engineering Hybrid H501 Injection System for concrete	Annex C6
Performances Displacements (threaded rods)	Ailliex 00

Table C8: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinfo	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32				
Non-cracked cond	crete C20/	25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperature range III: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
	δ _{N∞} -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete	C20/25											
Temperature range I: 40°C/24°C	δ _{N0} -factor	[mm/(N/mm²)]	0,090		0,070							
	δ _{N∞} -factor	[mm/(N/mm²)]	0,105		0,105							
Temperature range II: 80°C/50°C	δ _{N0} -factor	[mm/(N/mm²)]	0,219		0,170							
	δ _{N∞} -factor	[mm/(N/mm²)]	0,255		0,245							
Temperature range III: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,219		0,170							
	δ _{N∞} -factor	[mm/(N/mm²)]	0,255		0,245							

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor } \cdot \tau;$

Table C9: Displacement under shear load¹⁾ (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked con	crete C20/2	25									
All temperature ranges	δ _{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V\infty}\text{-factor}$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete C20/25											
All temperature ranges	δ _{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
	δ _{V∞} -factor	[mm/(kN)]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

Hobson Engineering Hybrid H501 Injection System for concrete	Annex C7
Performances Displacements (rebar)	7 iiiii GA G1