

HOBSON XCHEM® C601

CAPSULE

XCHEM® PRO

ETA 20/0533 (26/07/2024)

Option 1[†]

Seismic C1

DOC Link 10043

† Suitable for use in Cracked and Non-Cracked Concrete.

hobson.com.au **QUALITY FASTENERS** SINCE 1935

European Technical Assessment

ETA-20/0533
of 26 July 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the
European Technical Assessment:

Trade name of the construction product

Product family
to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment
contains

This European Technical Assessment is
issued in accordance with Regulation (EU)
No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Chemical Anchor VZ

Bonded fasteners and bonded expansion fasteners for
use in concrete

MKT

Metall-Kunststoff-Technik GmbH & Co. KG

Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

Plant 1, D

22 pages including 3 annexes which form an integral part
of this assessment

EAD 330499-02-0601, Edition 12/2023

ETA-20/0533 issued on 16 December 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The "Chemical Anchor VZ" is a bonded fastener consisting of a resin anchor capsule VZ-P and an anchor rod V-A or an internally threaded anchor rod VZ-IG.

The resin anchor capsule VZ-P is placed in the hole and the anchor rod V-A or the internally threaded anchor rod VZ-IG is driven by machine as specified in Annex B6 and B7.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C1, C2, C5, B2, B3
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1, C3, C6
Displacements under short-term and long-term loading	See Annex C7
Characteristic resistance for seismic performance category C1	See Annex C4
Characteristic resistance and displacements for seismic performance category C2	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

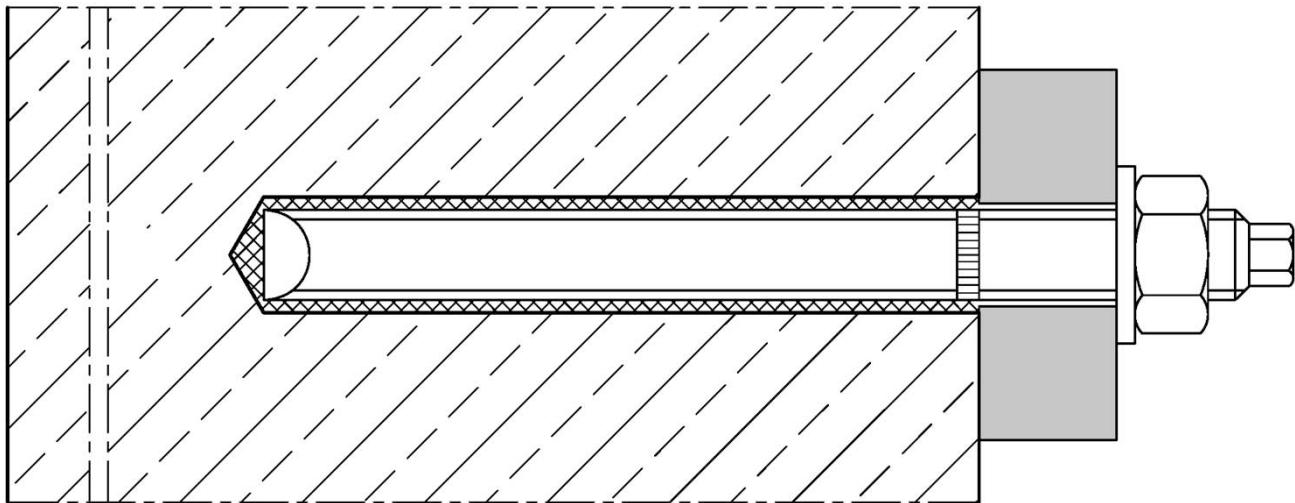
In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

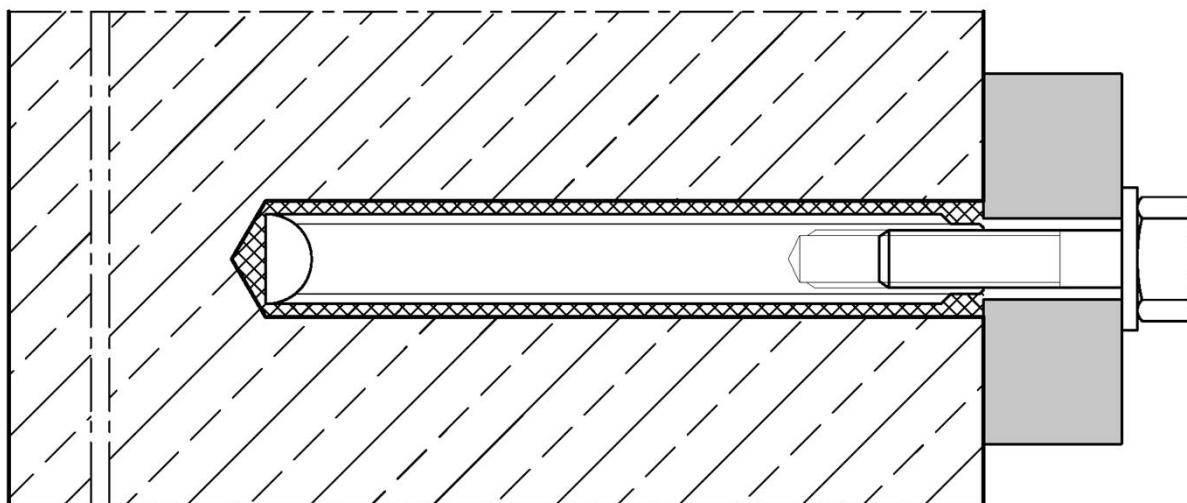
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 26 July 2024 by Deutsches Institut für Bautechnik


Dipl.-Ing. Beatrix Wittstock

Head of Section


beglaubigt:

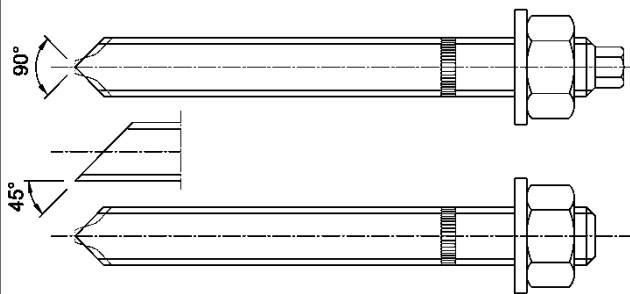
Stiller

Installation situation Chemical Anchor VZ with anchor rod V-A
(optional annular gap filled with mortar)

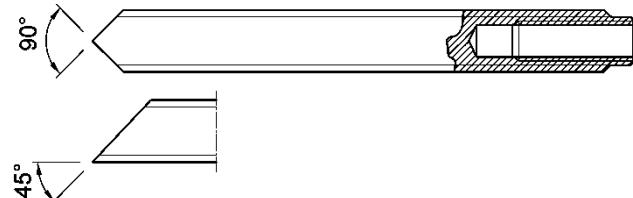
Installation situation Chemical Anchor VZ with Internally threaded anchor rod VZ-IG¹⁾ (optional annular gap filled with mortar)

¹⁾ Illustration exemplary with hexagon head screw; fastening also possible with other screws or with threaded rods.

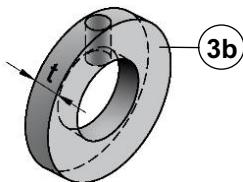
Chemical Anchor VZ


Product Description
Installation situation

Annex A1


Resin Anchor Capsule VZ-P

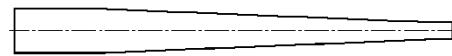
Anchor rod V-A



Internally threaded anchor rod VZ-IG

Supplies

Filling washer VS and reducing adapter for filling gap between anchor rod and fixture



Thickness of filling washer

for diameter

M8 to M20: $t = 5 \text{ mm}$

M24 to M30: $t = 6 \text{ mm}$

Cleaning supplies

$\leq \text{M24}$

Vacuum drill bit

$\leq \text{IG M16}$

Vacuum drill bit (MKT Hollow drill bit SB, Würth extraction drill bit or Heller Duster Expert) and a class M vacuum cleaner with minimum negative pressure of 253 hPa and a flow rate of minimum 42 l/s

or

all
diameters

Compressed air tool (min 6 bar)

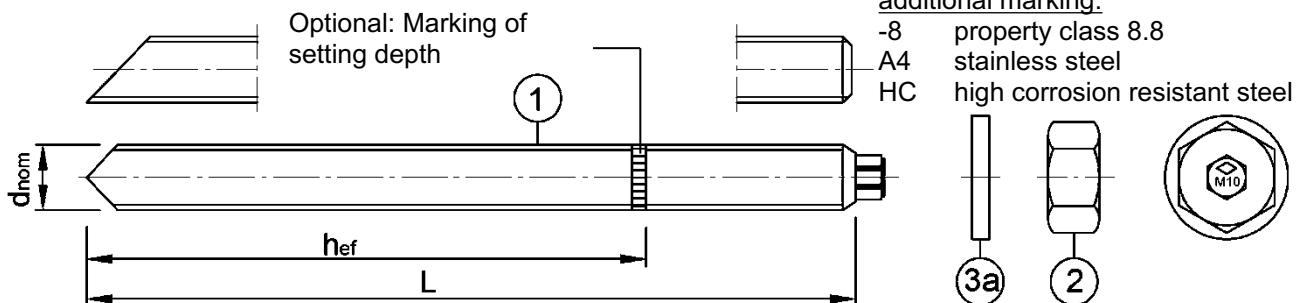
Cleaning Brush RB

$\leq \text{M20}$

Blow-out pump (volume 750 ml)

$\leq \text{IG M12}$

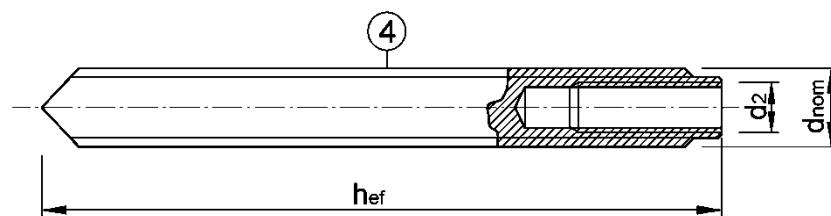
Chemical Anchor VZ


Product Description

Resin Anchor Capsule, anchor rods and supplies

Annex A2

Anchor rod V-A


M8, M10, M12, M16, M20, M24, M30

Anchor rod V-A	M8	M10	M12	M16	M20	M24	M30
Outer diameter $d=d_{nom}$ [mm]	8	10	12	16	20	24	30
Length $L \geq$ [mm]	90	101	125	145	192	235	301
Effective anchorage depth h_{ef} [mm]	80	90	110	125	170	210	270
Hexagon nut wrench size [mm]	13	17	19	24	30	36	46

Internally threaded anchor rod VZ-IG

VZ-IG M6, VZ-IG M8, VZ-IG M10, VZ-IG M12, VZ-IG M16, VZ-IG M20

Marking e.g.: M8

identifying mark of manufacturing plant

M8 size of internal thread

additional marking:

- 8 property class 8.8
- A4 stainless steel
- HCR high corrosion resistant steel

Internally threaded anchor rod VZ-IG	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Outer diameter of threaded rod $d=d_{nom}$ [mm]	10	12	16	20	24	30
Inner diameter of threaded rod d_2 [mm]	6	8	10	12	16	20
Minimum screw in-depth l_{IG} [mm]	8	8	10	12	16	20
Effective anchorage depth h_{ef} [mm]	90	110	125	170	210	270

Requirements for fastening screws or threaded rods (incl. nut and washer):

These must at least correspond to the material and strength class of the internally threaded anchor rod used.

Material:

- Steel, zinc plated:** Minimum property class 5.8 or 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012
- Stainless steel A4 or high corrosion resistant steel (HCR):** Minimum property class 70 according to EN ISO 3506-1:2020 or EN ISO 3506-2:2020

Chemical Anchor VZ

Product Description
Marking

Annex A3

Table A1: Materials

Part	Designation	Materials									
Steel, zinc plated											
electroplated $\geq 5 \mu\text{m}$ according to EN ISO 4042:2018											
hot-dip galvanized $\geq 50 \mu\text{m}$ average coating thickness according to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009											
sherardized $\geq 45 \mu\text{m}$ according to EN ISO 17668:2016											
1	Anchor rod	Property class	characteristic ultimate strength		characteristic yield strength	fracture elongation					
5.8		f_{uk} [N/mm ²]	500		f_{yk} [N/mm ²]	400					
			800			640					
2	Hexagon nut	5	for class 5.8 anchor rods								
		8	for class 5.8, 8.8 anchor rods								
3a	Washer	steel, zinc plated									
3b	Filling washer	steel, zinc plated									
4	Internally threaded anchor rod	5.8	steel, electroplated or sherardized								
		8.8									
Stainless steel A4		CRC III acc. to EN 1993-1-4:2006+A1:2015									
High corrosion resistant steel HCR		CRC V acc. to EN 1993-1-4:2006+A1:2015									
acc. to EN 10088:2014											
1	Anchor rod	Property class	characteristic ultimate strength		characteristic steel yield strength	fracture elongation					
50		f_{uk} [N/mm ²]	500		f_{yk} [N/mm ²]	210					
			700			560					
			800			640					
2	Hexagon nut	50	for class 50 anchor rods								
70			for class 50, 70 anchor rods								
			for class 50, 70, 80 anchor rods								
3a	Washer	stainless steel A4; high corrosion resistant steel HCR									
3b	Filling washer	stainless steel A4; high corrosion resistant steel HCR									
4	Internally threaded anchor rod	50	IG-M20		stainless steel A4; high corrosion resistant steel HCR						
		70	IG-M6 bis IG M20		stainless steel A4; high corrosion resistant steel HCR						
Glass capsule											
5	Resin Anchor Capsule	glass, quartz, resin, hardener									

Chemical Anchor VZ

Product Description
Material

Annex A4

Specifications of intended use

Chemical Anchor VZ with	Anchor rod V-A	Internally threaded anchor rod VZ-IG
Static or quasi-static action	M8 to M30	IG-M6 to IG-M20
Seismic action, performance category C1	M8 to M30¹⁾	no performance assessed
Base materials	compacted, reinforced or unreinforced normal weight concrete without fibers acc. to EN 206:2013+A1:2016 strength classes C20/25 to C50/60, acc. to EN 206:2013+A1:2016 cracked or uncracked concrete	
Temperature range I -40°C to +40°C	max long-term temperature +24°C; max short-term temperature +40°C	
Temperature range II -40°C to +80°C	max long-term temperature +50°C; max short-term temperature +80°C	

¹⁾ M30: property class 8.8 and A4/ HCR property class ≥ 70

Use conditions (Environmental conditions):

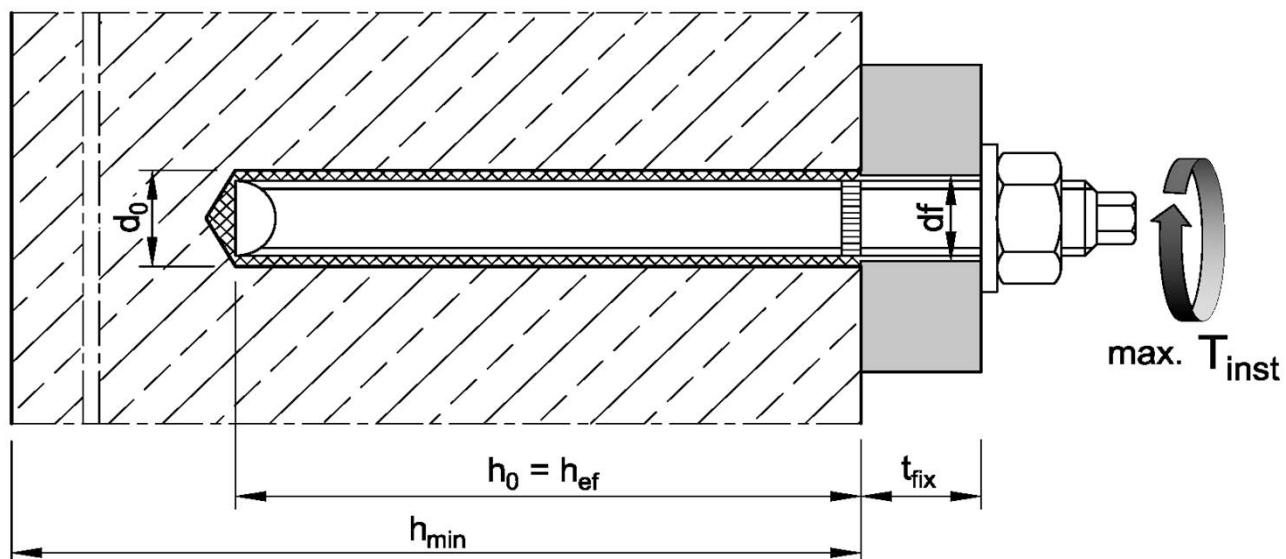
- Structures subject to dry internal conditions: all versions
- For all other conditions according to EN 1993-1-4:2006+A1:2015, corresponding to corrosion resistance classes CRC according to Annex A4, Table A1

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed according to EN 1992-4:2018 or TR 055, version February 2018

Installation:

- Dry or wet concrete
- Making of drill hole by hammer drilling, compressed air drilling or vacuum drilling (see Annex A2)
- Installation direction: D3 - downwards, horizontally and upwards (e.g. overhead) installation
- Installation temperature in concrete:
-20°C up to +40°C for the standard variation of temperature after installation.
- Optionally, the annular gap between anchor rod and attachment can be backfilled. In this case, the washer is replaced by the filling washer (Part 3b, Annex A2). MKT injection mortars VMH, VMU plus, VMZ or other high-strength injection mortars with a compressive strength $\geq 40\text{N/mm}^2$ can be used for backfilling.
- Internally threaded anchor rods: Bolts or threaded rod (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod that is used.
The length of screw or the threaded rod shall be determined depending on the thickness of fixture t_{fix} , available thread length and the minimum screw-in depth $L_{sd,min}$.

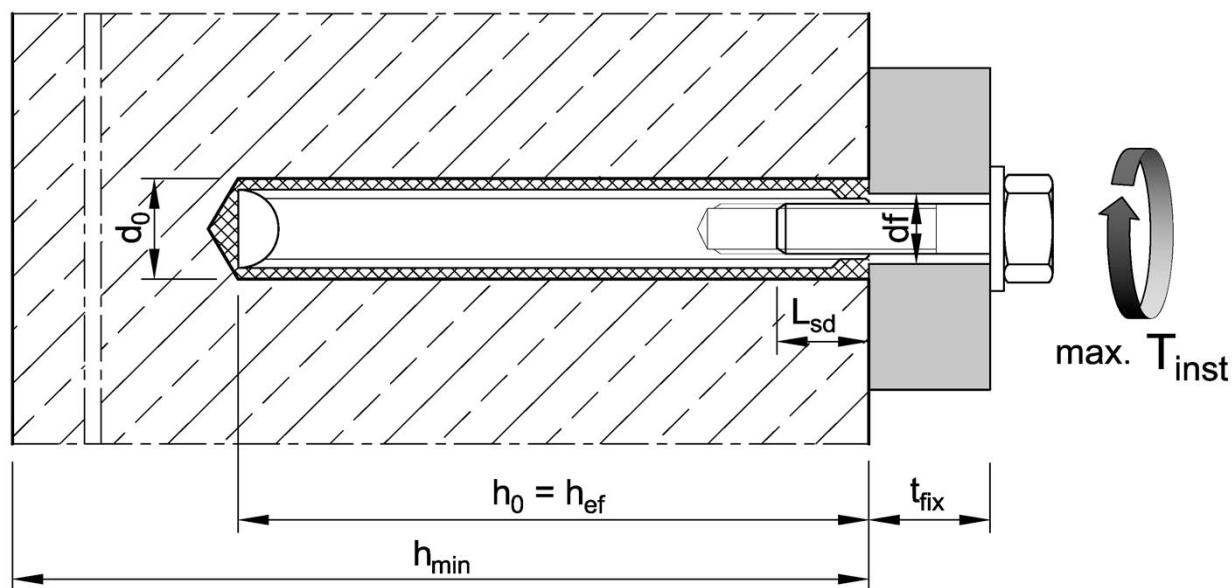

Chemical Anchor VZ

Intended Use Specifications

Annex B1

Table B1: Installation parameters for anchor rods V-A

Anchor rod V-A	M8	M10	M12	M16	M20	M24	M30
Resin Anchor Capsule	VZ-P 8	VZ-P 10	VZ-P 12	VZ-P 16	VZ-P 20	VZ-P 24	VZ-P 30
Diameter of threaded rod $d = d_{\text{nom}}$ [mm]	8	10	12	16	20	24	30
Nominal diameter of drill hole d_0 [mm]	10	12	14	18	22	28	35
Depth of drill hole h_0 [mm]	80	90	110	125	170	210	270
Effective anchorage depth h_{ef} [mm]	80	90	110	125	170	210	270
Diameter of clearance hole in the fixture d_f [mm]	9	12	14	18	22	26	33
Cleaning Brush [-]	RB 10	RB 12	RB 14	RB 18	RB 22	RB 28	RB 35
Diameter of Cleaning Brush $d_b \geq$ [mm]	10,5	12,5	14,5	18,5	22,5	28,5	35,5
Maximum installation torque $\max T_{\text{inst}}$ [Nm]	10	20	40	80	150	200	300
Minimum member thickness h_{min} [mm]	110	120	140	160	220	270	340
Minimum edge distance c_{min} [mm]	40	45	45	50	55	60	80
Minimum spacing s_{min} [mm]	40	50	60	75	90	115	140


Chemical Anchor VZ

Intended Use
Installation parameters – Anchor rod V-A

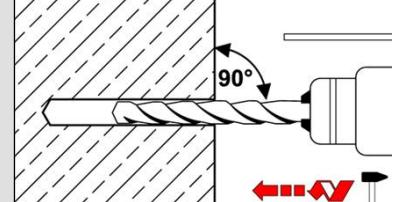
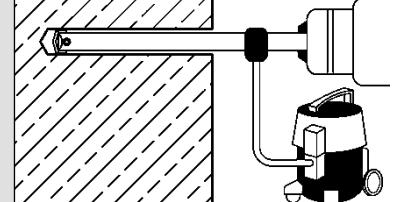
Annex B2

Table B2: Installation parameters for internally threaded anchor rods VZ-IG

Internally threaded anchor rod VZ-IG	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Resin Anchor Capsule	VZ-P 10	VZ-P 12	VZ-P 16	VZ-P 20	VZ-P 24	VZ-P 30
Outer diameter of threaded rod $d = d_{\text{nom}}$ [mm]	10	12	16	20	24	30
Inner diameter of threaded rod d_2 [mm]	6	8	10	12	16	20
Nominal drill hole diameter d_0 [mm]	12	14	18	22	28	35
Depth of drill hole h_0 [mm]	90	110	125	170	210	270
Effective anchorage depth h_{ef} [mm]	90	110	125	170	210	270
Diameter of clearance hole in the fixture d_f [mm]	7	9	12	14	18	22
Cleaning Brush [-]	RB 12	RB 14	RB 18	RB 22	RB 28	RB 35
Diameter of Cleaning Brush $d_b \geq$ [mm]	12,5	14,5	18,5	22,5	28,5	35,5
Minimum screw-in depth $L_{\text{sd},\text{min}}$ [mm]	8	8	10	12	16	20
Maximum installation torque $\text{max } T_{\text{inst}}$ [Nm]	10	10	20	40	60	100
Minimum member thickness h_{min} [mm]	120	140	160	220	270	340
Minimum edge distance c_{min} [mm]	45	45	50	55	60	80
Minimum spacing s_{min} [mm]	50	60	75	90	115	140

Chemical Anchor VZ

Intended Use

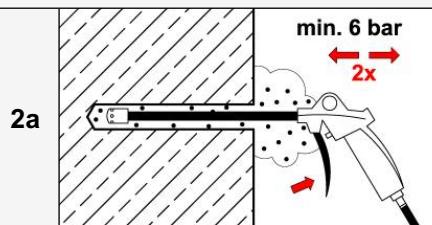


Installation parameters – Internally threaded anchor rod VZ-IG

Annex B3

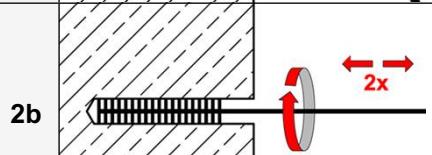
Table B3: Curing time

Concrete temperature	Minimum curing time
-20°C to -16°C	17 h
-15°C to -11°C	7 h
-10°C to -6°C	4 h
-5°C to -1°C	3 h
0°C to +4°C	50 min
+5°C to +9°C	25 min
+10°C to +19°C	15 min
+20°C to +29°C	6 min
+30°C to +40°C	6 min
Capsule temperature	-15°C to +40°C

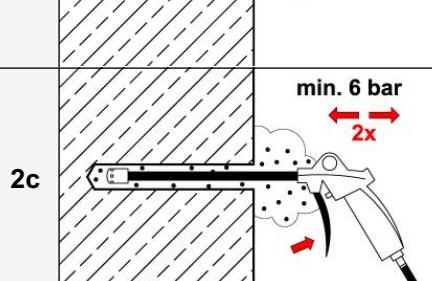
Installation instructions


Drilling	
1	<p>Hammer drill or compressed air drill: Drill the hole with diameter and depth according to Table B1 and B2. Continue with <u>step 2</u>.</p>
	<p>Vacuum drill: see Annex A2 Drill the hole with diameter and depth according to Table B1 and B2. Additional cleaning is not necessary - continue with <u>step 3</u>.</p>
Chemical Anchor VZ	
Intended Use Curing time / Installation instructions - drilling	Annex B4

Installation instructions – continuation

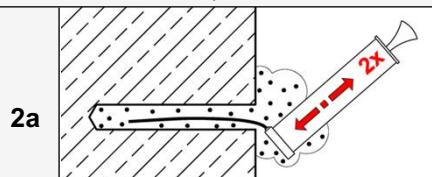

Cleaning - Drill hole must be cleaned directly before installation of the anchor, or it must be protected against recontamination in a suitable manner until installation of the anchor.

Cleaning with compressed air

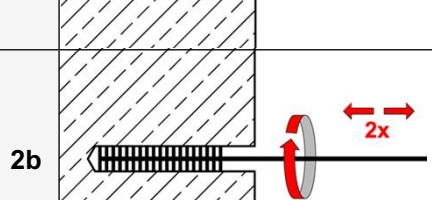

all diameters

Blow out the drill hole completely at least **2x** from the bottom of the drill hole with compressed air.

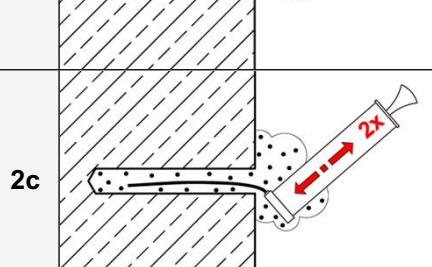
Brush the drill hole **2x** with Cleaning Brush RB (Table B1 or B2). Observe and check brush diameter d_b . When inserting the brush into the drill hole, a clear resistance must be noticeable. Otherwise use a new Cleaning Brush.



Blow out the drill hole completely at least **2x** from the bottom of the drill hole with compressed air.


2

Manual cleaning

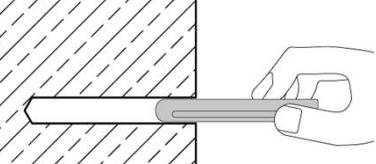
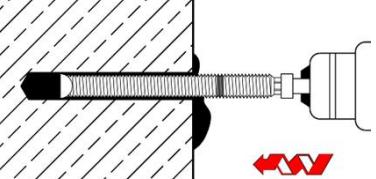
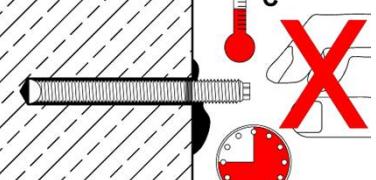
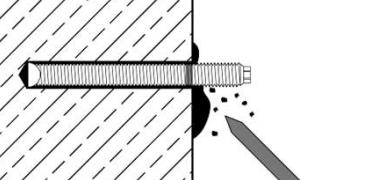
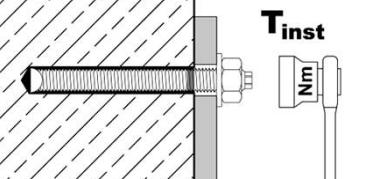
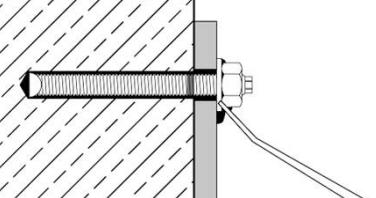

Sizes M8 to M20, IG-M6 to IG M12

Blow out the drill hole completely at least **2x** from the bottom of the drill hole with blow-out pump.

Brush the drill hole **2x** with Cleaning Brush RB (Table B1 or B2). Observe and check brush diameter d_b . When inserting the brush into the drill hole, a clear resistance must be noticeable. Otherwise use a new Cleaning Brush.

Blow out the drill hole completely at least **2x** from the bottom of the drill hole with blow-out pump.

Chemical Anchor VZ







Intended Use

Installation instructions - Cleaning

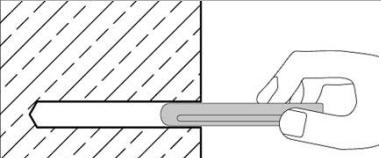
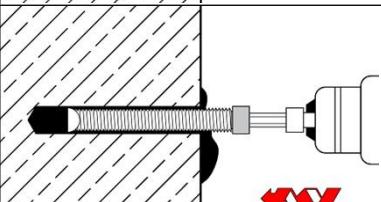
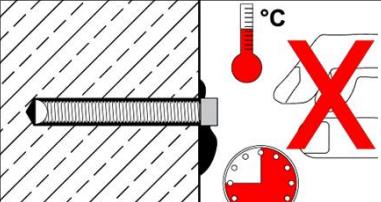
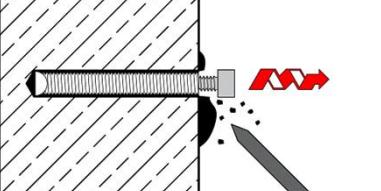
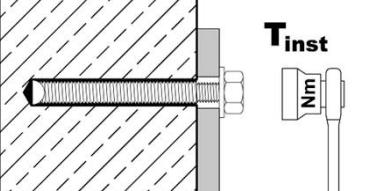
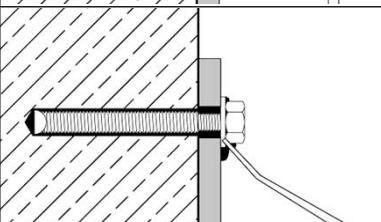
Annex B5

Installation instructions - continuation

Inserting the anchor rod V-A

	<p>Check the depth of drill hole. If necessary, mark anchoring depth on the anchor rods. Insert the capsule into the drill hole.</p>
	<p>Drive in the anchor rod using a hammer drill set on rotary impact. Stop immediately after reaching the setting depth.</p>
	<p>Observe curing time according to Table B3. Do not move or load the anchor until it is fully cured.</p>
	<p>Remove excess adhesive.</p>
	<p>Install fixture and apply installation torque T_{inst} according to Table B1.</p>
	<p>The annular gap between anchor rod and fixture may optionally be filled with mortar (see Annex B1). Therefore, replace regular washer by filling washer (note thickness of the filling washer) and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.</p>

Chemical Anchor VZ







Intended Use

Installation instructions – Inserting anchor rod V-A

Annex B6

Installation instructions - continuation

Inserting the internally threaded anchor rod VZ-IG

	<p>Check the depth of drill hole. Insert the capsule into the drill hole.</p>
	<p>Screw the setting tool into the internally threaded anchor rod VZ-IG until stop. Drive in the internally threaded anchor rod with a hammer drill set to rotary impact. Switch off the hammer drill immediately after reaching the setting depth.</p>
	<p>Observe curing time according to Table B3. Do not move or load the anchor and don't remove the setting tool until it is fully cured.</p>
	<p>Remove excess adhesive and unscrew the setting tool.</p>
	<p>The fixture can be mounted with threaded rod, nut and washer or screw. Apply the installation torque T_{inst} according to Table B2.</p>
	<p>The annular gap between threaded rod or screw and fixture may optionally be filled with mortar (see Annex B1). Therefore, replace regular washer by filling washer or assemble it on the screw (observe thickness of filling washer and minimum screw-in depth). Plug on reducing adapter on static mixer and fill annular gap. It is completely filled, when excess mortar seeps out.</p>

Chemical Anchor VZ

Intended Use

Installation instructions – Inserting internally threaded anchor rod VZ-IG

Annex B7

Table C1: Characteristic steel resistance under tension load for anchor rods V-A

Anchor rod V-A			M8	M10	M12	M16	M20	M24	M30 ²⁾
Steel failure									
Characteristic resistance under tension load									
Steel, zinc plated	Property class 5.8	N _{Rk,s} [kN]	18	29	42	79	123	176	280
	Property class 8.8	N _{Rk,s} [kN]	29	46	67	126	196	282	448
Stainless steel / high corrosion resistant steel	Property class 70	N _{Rk,s} [kN]	26	41	59	110	172	247	392
	Property class 80	N _{Rk,s} [kN]	29	46	67	126	196	282	- 3)
Partial factor¹⁾									
Steel, zinc plated	Property class 5.8	γ _{Ms,N} [-]							1,5
	Property class 8.8	γ _{Ms,N} [-]							1,5
Stainless steel / high corrosion resistant steel	Property class 70	γ _{Ms,N} [-]							1,5
	Property class 80	γ _{Ms,N} [-]							1,5

¹⁾ In absence of other national regulations

²⁾ M30 A4/HCR also in strength class 50 with N_{Rk,s} = 281 kN and γ_{Ms,N} = 2,86

³⁾ Anchor type not part of the ETA

Table C2: Characteristic steel resistance under shear load for anchor rods V-A

Anchor rod V-A			M8	M10	M12	M16	M20	M24	M30 ²⁾
Characteristic resistances under shear load									
Steel failure without lever arm									
Steel, zinc plated	Property class 5.8	V ⁰ _{Rk,s} [kN]	11	17	25	47	73	106	168
	Property class 8.8	V ⁰ _{Rk,s} [kN]	15	23	34	63	98	141	224
Stainless steel / high corrosion resistant steel	Property class 70	V ⁰ _{Rk,s} [kN]	13	20	30	55	86	123	196
	Property class 80	V ⁰ _{Rk,s} [kN]	15	23	34	63	98	141	- 3)
Steel failure with lever arm									
Steel, zinc plated	Property class 5.8	M ⁰ _{Rk,s} [Nm]	19	37	65	166	325	561	1124
	Property class 8.8	M ⁰ _{Rk,s} [Nm]	30	60	105	266	519	898	1799
Stainless steel / high corrosion resistant steel	Property class 70	M ⁰ _{Rk,s} [Nm]	26	52	92	233	454	785	1574
	Property class 80	M ⁰ _{Rk,s} [Nm]	30	60	105	266	519	898	- 3)
Partial factor¹⁾									
Steel, zinc plated	Property class 5.8	γ _{Ms,V} [-]							1,25
	Property class 8.8	γ _{Ms,V} [-]							1,25
Stainless steel / high corrosion resistant steel	Property class 70	γ _{Ms,V} [-]							1,25
	Property class 80	γ _{Ms,V} [-]							1,25

¹⁾ In absence of other national regulations

²⁾ M30 A4/HCR also in strength class 50 with V_{Rk,s} = 140 kN; M⁰_{Rk,s} = 1124 Nm and γ_{Ms,V} = 2,38

³⁾ Anchor type not part of the ETA

Chemical Anchor VZ

Performances

Characteristic steel resistance under tension and shear load for anchor rods V-A

Annex C1

Table C3: Characteristic values of tension loads for anchor rods V-A

Anchor rod V-A	M8	M10	M12	M16	M20	M24	M30		
Steel failure									
Characteristic resistance under tension load									
Characteristic tension resistance	$N_{Rk,s}$	[kN]	see Table C1						
Partial factor	$\gamma_{Ms,N}$	[-]	see Table C1						
Combined pull-out and concrete failure									
Characteristic bond resistance in uncracked concrete C20/25									
Temperature range I: +24°C / +40°C	$\tau_{Rk,ucr}$	[N/mm ²]	8,7	11,4	11,4	11,4	11,4	11,3	11,6
Temperature range II: +50°C / +80°C	$\tau_{Rk,ucr}$	[N/mm ²]	7,3	9,7	9,7	9,7	9,7	9,5	9,8
Increasing factors for $\tau_{Rk,ucr}$ $\tau_{Rk,ucr} = \psi_{c,ucr} \cdot \tau_{Rk,ucr}(C20/25)$	$\psi_{c,ucr}$	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,17}$						
Characteristic bond resistance in cracked concrete C20/25									
Temperature range I: +24°C / +40°C	$\tau_{Rk,cr}$	[N/mm ²]	4,4	5,6	5,9	6,2	6,2	6,4	6,7
Temperature range II: +50°C / +80°C	$\tau_{Rk,cr}$	[N/mm ²]	3,7	4,7	5,0	5,2	5,2	5,4	5,6
Increasing factors for $\tau_{Rk,cr}$ $\tau_{Rk,cr} = \psi_{c,cr} \cdot \tau_{Rk,cr}(C20/25)$	$\psi_{c,cr}$	[-]	$\left(\frac{f_{ck}}{20}\right)^{0,14}$						
Reduction factor ψ^0_{sus} in concrete C20/25									
Temperature range I: +24°C / +40°C	ψ^0_{sus}	[-]	0,64						
Temperature range II: +50°C / +80°C	ψ^0_{sus}	[-]	0,63						
Concrete cone failure									
Factor for	uncracked concrete	$k_{ucr,N}$	[-]	11,0					
	cracked concrete	$k_{cr,N}$	[-]	7,7					
Edge distance		$c_{cr,N}$	[mm]	1,5 h_{ef}					
Spacing		$s_{cr,N}$	[mm]	3 h_{ef}					
Splitting failure									
Edge distance	$h/h_{ef} \geq 2,0$	$c_{cr,sp}$	[mm]	1,0 h_{ef}					
	$2,0 > h/h_{ef} > 1,3$			2 · h_{ef} (2,5 - h/h_{ef})					
	$h/h_{ef} \leq 1,3$			2,4 h_{ef}					
Spacing		$s_{cr,sp}$	[mm]	2 $c_{cr,sp}$					
Installation factor		γ_{inst}	[-]	1,0					
Chemical Anchor VZ									
Performances Characteristic values under tension load for anchor rods V-A									
Annex C2									

Table C4: Characteristic values of shear loads for anchor rods V-A

Anchor rod V-A			M8	M10	M12	M16	M20	M24	M30
Steel failure without lever arm									
Characteristic resistance	$V^0_{Rk,s}$	[kN]							see Table C2
Ductility factor	k_7	[-]							1,0
Partial factor	$\gamma_{Ms,V}$	[-]							see Table C2
Steel failure with lever arm									
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]							see Table C2
Partial factor	$\gamma_{Ms,V}$	[-]							see Table C2
Concrete pry-out failure									
Pry-out factor	k_8	[-]							2,0
Concrete edge failure									
Effective length of anchor	l_f	[mm]	80	90	110	125	170	210	270
Outside diameter of anchor	d_{nom}	[mm]	8	10	12	16	20	24	30
Installation factor	γ_{inst}	[-]							1,0

Chemical Anchor VZ

Performances

Characteristic values under **shear load** for **anchor rods V-A**

Annex C3

Table C5: Characteristic values of tension loads for anchor rods V-A under seismic action, performance category C1

Anchor rod V-A	M8	M10	M12	M16	M20	M24	M30		
Steel failure									
Characteristic resistance under tension load									
Characteristic tension resistance	$N_{Rk,s,C1}$	[kN]							
			$N_{Rk,s}$ see Table C1						
Partial factor	$\gamma_{Ms,N}$	[-]					see Table C1		
Combined pull-out and concrete failure									
Characteristic bond resistance in concrete C20/25 to C50/60									
Temperature range I: +24°C / +40°C	$\tau_{Rk,C1}$	[N/mm ²]	4,0	4,8	5,4	5,1	6,2	5,9	5,8
Temperature range II: +50°C / +80°C	$\tau_{Rk,C1}$	[N/mm ²]	3,3	4,0	4,6	4,3	5,2	5,0	4,8
Installation factor	γ_{inst}	[-]						1,0	

Table C6: Characteristic values of shear loads for anchor rods V-A under seismic action, performance category C1

Anchor rod V-A	M8	M10	M12	M16	M20	M24	M30			
Steel failure without lever arm										
Characteristic resistance under shear load										
Steel, zinc plated	Property class 5.8	$V_{Rk,s,C1}$	[kN]	9,0	14,3	20,7	36,3	56,2	81,5	- ¹⁾
	Property class 8.8	$V_{Rk,s,C1}$	[kN]	12,0	19,0	27,7	48,4	75,5	109,3	177,6
Stainless steel / High corrosion resistant steel	Property class 70	$V_{Rk,s,C1}$	[kN]	10,5	16,6	24,2	42,3	66,0	94,7	154,9
	Property class 80	$V_{Rk,s,C1}$	[kN]	12,0	19,0	27,7	48,4	75,5	108,7	- ²⁾
Partial factor	$\gamma_{Ms,V}$	[-]						see Table C2		
Factor for anchorages	with annular gap	α_{gap}	[-]					0,5		
	without annular gap	α_{gap}	[-]					1,0		
Installation factor	γ_{inst}	[-]						1,0		

¹⁾ No performance assessed

²⁾ Anchor type not part of the ETA

Chemical Anchor VZ

Performances
Characteristic values under seismic action, performance category C1 for anchor rods V-A

Annex C4

Table C7: Characteristic steel resistance under tension load for internally threaded anchor rods VZ-IG

Internally threaded anchor rod VZ-			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel failure									
Characteristic resistance, steel, zinc plated	Property class 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123
	Property class 8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial factor ¹⁾		γ _{Ms,N}	[-]			1,5			
Characteristic resistance, stainless steel A4 / HCR	Property class 70	N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾
Partial factor ¹⁾		γ _{Ms,N}	[-]			1,87			2,86
Combined pull-out and concrete failure									
Characteristic bond resistance in uncracked concrete C20/25									
Temperature range I:	+24°C / +40°C	τ _{Rk,ucr}	[N/mm ²]	11,4	11,4	11,4	11,4	11,3	11,6
Temperature range II:	+50°C / +80°C	τ _{Rk,ucr}	[N/mm ²]	9,7	9,7	9,7	9,7	9,5	9,8
Increasing factors for τ _{Rk,ucr}		Ψ _{c,ucr}	[-]			$\left(\frac{f_{ck}}{20}\right)^{0,17}$			
τ _{Rk,ucr} = Ψ _{c,ucr} · τ _{Rk,ucr} (C20/25)									
Characteristic bond resistance in cracked concrete C20/25									
Temperature range I:	+24°C / +40°C	τ _{Rk,cr}	[N/mm ²]	5,6	5,9	6,2	6,2	6,4	6,7
Temperature range II:	+50°C / +80°C	τ _{Rk,cr}	[N/mm ²]	4,7	5,0	5,2	5,2	5,4	5,6
Increasing factors for τ _{Rk,cr}		Ψ _{c,cr}	[-]			$\left(\frac{f_{ck}}{20}\right)^{0,14}$			
τ _{Rk,cr} = Ψ _{c,cr} · τ _{Rk,cr} (C20/25)									
Reduction factor ψ⁰_{sus} in concrete C20/25									
Temperature range I:	+24°C / +40°C	ψ ⁰ _{sus}	[-]			0,64			
Temperature range II:	+50°C / +80°C	ψ ⁰ _{sus}	[-]			0,63			
Concrete cone failure									
Factor for uncracked concrete		k _{ucr,N}	[-]			11,0			
Factor for cracked concrete		k _{cr,N}	[-]			7,7			
Edge distance		c _{cr,N}	[mm]			1,5 h _{ef}			
Spacing		s _{cr,N}	[mm]			3 h _{ef}			
Splitting failure									
Edge distance	h/h _{ef} ≥ 2,0					1,0 h _{ef}			
	2,0 > h/h _{ef} > 1,3	c _{cr,sp}	[mm]			2 · h _{ef} (2,5 - h / h _{ef})			
	h/h _{ef} ≤ 1,3						2,4 h _{ef}		
Spacing		s _{cr,sp}	[mm]			2 c _{cr,sp}			
Installation factor		γ _{inst}	[-]			1,0			

¹⁾ In absence of other national regulations

²⁾ IG M20: property class 50

Chemical Anchor VZ

Performances

Characteristic values under **tension load** for internally threaded anchor rods VZ-IG

Annex C5

Table C8: Characteristic steel resistance under shear load for internally threaded anchor rods VZ-IG

Internally threaded anchor rod VZ-			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever arm ¹⁾								
Steel, zinc plated	Property class 5.8	$V_{Rk,s}^0$ [kN]	6	10	17	25	45	74
	Property class 8.8	$V_{Rk,s}^0$ [kN]	8	14	23	34	60	98
Stainless steel A4 / HCR	Property class 70	$V_{Rk,s}^0$ [kN]	7	13	20	30	55	62 ³⁾
Ductility factor		k_7 [-]				1,0		
Partial factor ²⁾								
Steel, zinc plated	Property class 5.8	$\gamma_{Ms,V}$ [-]				1,25		
	Property class 8.8	$\gamma_{Ms,V}$ [-]				1,25		
Stainless steel A4 / HCR	Property class 70	$\gamma_{Ms,V}$ [-]			1,56			2,38
Steel failure with lever arm ¹⁾								
Steel, zinc plated	Property class 5.8	$M_{Rk,s}^0$ [Nm]	8	19	37	66	167	325
	Property class 8.8	$M_{Rk,s}^0$ [Nm]	12	30	60	105	267	519
Stainless steel A4 / HCR	Property class 70	$M_{Rk,s}^0$ [Nm]	11	26	53	92	234	456 ³⁾
Partial factor ²⁾								
Steel, zinc plated	Property class 5.8	$\gamma_{Ms,V}$ [-]			1,25			
	Property class 8.8	$\gamma_{Ms,V}$ [-]			1,25			
Stainless steel A4 / HCR	Property class 70	$\gamma_{Ms,V}$ [-]			1,56			
Concrete pry-out failure								
Pry-out factor		k_8 [-]				2,0		
Concrete edge failure								
Effective length of fastener		l_f [mm]	90	110	125	170	210	270
Outside diameter of fastener		d_{nom} [mm]	10	12	16	20	24	30
Installation factor		γ_{inst} [-]			1,0			

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

²⁾ In absence of other national regulations

³⁾ IG M20: Internally threaded rod: property class 50;
Fastening screws or threaded rods (incl. nut and washer): property class 70

Chemical Anchor VZ

Performances

Characteristic values under shear load for internally threaded anchor rods VZ-IG

Annex C6

Table C9: Displacements under tension load

Anchor size	M8	M10 IG-M6	M12 IG-M8	M16 IG-M10	M20 IG-M12	M24 IG-M16	M30 IG-M20	
Displacement factor¹⁾ for uncracked concrete								
Displacement	δ_{N0} -factor [mm/(N/mm ²)]	0,015	0,031	0,035	0,015	0,046	0,060	0,060
	$\delta_{N\infty}$ -factor [mm/(N/mm ²)]	0,085	0,067	0,067	0,067	0,067	0,067	0,067
Displacement factor¹⁾ for cracked concrete								
Displacement	δ_{N0} -factor [mm/(N/mm ²)]	0,046	0,038	0,024	0,008	0,024	0,133	0,061
	$\delta_{N\infty}$ -factor [mm/(N/mm ²)]	0,192	0,142	0,090	0,104	0,082	0,069	0,087

¹⁾ Calculation of the displacement

$\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : acting bond stress for tension

$\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C10: Displacements under shear load

Anchor size	M8	M10 IG-M6	M12 IG-M8	M16 IG-M10	M20 IG-M12	M24 IG-M16	M30 IG-M20	
Displacement factor¹⁾								
Displacement	δ_{V0} -factor [mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03
	$\delta_{V\infty}$ -factor [mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,04

¹⁾ Calculation of the displacement

$\delta_{V0} = \delta_{V0}$ -factor $\cdot V$; V : acting shear load

$\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Chemical Anchor VZ

Performances
Displacements

Annex C7