

### HOBSON EAWMSZD18M CLAWBOLT ANCHOR

# THROUGH BOLT ZINC PLATED

Option 1<sup>†</sup>

Seismic

Fire Resistant

**DOC Link 10035** 

† Suitable for use in Cracked and Non-Cracked Concrete.



| Qfind   | Part Number      | Size    | Minimum<br>Embedment                  | ETA<br>Option | Fire<br>Rating | Seismic<br>C1 | Seismic<br>C2 | Seismic<br>Embedment | DOC<br>Link |          |          |          |          |      |       |
|---------|------------------|---------|---------------------------------------|---------------|----------------|---------------|---------------|----------------------|-------------|----------|----------|----------|----------|------|-------|
| EAW099M | EAWMSZD15M08060M | M8x60   | 35mm                                  | Option 1      | <b>~</b>       |               |               |                      |             |          |          |          |          |      |       |
| EAW100M | EAWMSZD18M08080M | M8x80   |                                       |               | <b>✓</b>       | <b>~</b>      | <b>~</b>      |                      |             |          |          |          |          |      |       |
| EAW101M | EAWMSZD18M08095M | M8x95   | 35mm                                  | Option 1      | <b>~</b>       | <b>~</b>      | <b>✓</b>      | 46mm                 |             |          |          |          |          |      |       |
| EAW102M | EAWMSZD18M08115M | M8x115  |                                       |               | <b>~</b>       | <b>~</b>      | <b>~</b>      |                      |             |          |          |          |          |      |       |
| EAW105M | EAWMSZD18M10090M | M10x90  |                                       |               | <b>/</b>       | <b>~</b>      | <b>✓</b>      |                      |             |          |          |          |          |      |       |
| EAW106M | EAWMSZD18M10100M | M10x100 |                                       |               | <b>✓</b>       | <b>~</b>      | <b>~</b>      |                      |             |          |          |          |          |      |       |
| EAW107M | EAWMSZD18M10110M | M10x110 | 40mm 130 155 180 105 110 125 145 50mm | Option 1      | <b>✓</b>       | <b>~</b>      | <b>~</b>      | 60mm                 |             |          |          |          |          |      |       |
| EAW108M | EAWMSZD18M10130M | M10x130 |                                       | 40000         | Орион          | <b>~</b>      | ~             | <b>~</b>             | 60mm        |          |          |          |          |      |       |
| EAW211M | EAWMSZD18M10155M | M10x155 |                                       |               |                | <b>✓</b>      | <b>~</b>      | <b>~</b>             |             |          |          |          |          |      |       |
| EAW109M | EAWMSZD18M10180M | M10x180 |                                       |               |                |               |               | <b>✓</b>             | ~           | <b>~</b> |          |          |          |      |       |
| EAW213M | EAWMSZD18M12105M | M12x105 |                                       | 50mm          | 50mm C         |               | <b>✓</b>      | <b>~</b>             | <b>~</b>    |          |          |          |          |      |       |
| EAW111M | EAWMSZD18M12110M | M12x110 |                                       |               |                | 50mm          | 50mm          |                      | <b>~</b>    | ~        | <b>~</b> |          | 10035    |      |       |
| EAW112M | EAWMSZD18M12125M | M12x125 |                                       |               |                |               |               | 50mm                 | 50mm        |          | <b>✓</b> | <b>~</b> | <b>~</b> | 70mm | 10035 |
| EAW214M | EAWMSZD18M12145M | M12x145 |                                       |               |                |               |               |                      |             | Option 1 | <b>~</b> | ~        | <b>~</b> |      |       |
| EAW113M | EAWMSZD18M12160M | M12x160 |                                       |               |                |               |               |                      |             |          | <b>✓</b> | ~        | <b>✓</b> |      |       |
| EAW114M | EAWMSZD18M12180M | M12x180 |                                       |               |                | <b>✓</b>      | ~             | <b>/</b>             |             |          |          |          |          |      |       |
| EAW115M | EAWMSZD18M12200M | M12x200 |                                       |               | <b>✓</b>       | <b>~</b>      | <b>~</b>      |                      |             |          |          |          |          |      |       |
| EAW121M | EAWMSZD18M16135M | M16x135 |                                       |               | <b>✓</b>       | <b>~</b>      | <b>✓</b>      |                      |             |          |          |          |          |      |       |
| EAW122M | EAWMSZD18M16145M | M16x145 | 65mm                                  | Option 1      | <b>✓</b>       | <b>~</b>      | <b>✓</b>      | 85mm                 |             |          |          |          |          |      |       |
| EAW123M | EAWMSZD18M16170M | M16x170 |                                       |               | <b>✓</b>       | <b>~</b>      | <b>~</b>      |                      |             |          |          |          |          |      |       |
| EAW124M | EAWMSZD15M16220M | M16x220 | 95mm                                  | Option 1      | -              | -             | -             | -                    |             |          |          |          |          |      |       |
| EAW216M | EAWMSZD15M16260M | M16x260 | 85mm                                  | Option 1      | -              | -             | -             | -                    |             |          |          |          |          |      |       |
| EAW125M | EAWMSZD18M20165M | M20x165 | 100                                   | Onti 4        | <b>✓</b>       | ~             | <b>~</b>      | 100                  |             |          |          |          |          |      |       |
| EAW217M | EAWMSZD18M20195M | M20x195 | 100mm                                 | Option 1      | <b>✓</b>       | ~             | ~             | 100mm                |             |          |          |          |          |      |       |







Public-law institution jointly founded by the federal states and the Federation

**European Technical Assessment Body** for construction products



### **European Technical Assessment**

### ETA-25/0105 of 23 April 2025

English translation prepared by DIBt - Original version in German language

### **General Part**

Technical Assessment Body issuing the **European Technical Assessment:** 

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Clawbolt Pro EAW and EIW

Mechanical fastener for use in concrete

Hobson Engineering Co Pty Ltd 10 Clay Place Eastern Creek NSW 2766 **AUSTRALIEN** 

Plant 6

36 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

Z121338.25

### **European Technical Assessment ETA-25/0105**

English translation prepared by DIBt



Page 2 of 36 | 23 April 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



Page 3 of 36 | 23 April 2025

### **Specific Part**

### 1 Technical description of the product

The Clawbolt Pro EAW and EIW is a fastener made of zinc plated steel, stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following fastener types are covered:

- Anchor type Clawbolt Pro EAW with external thread, washer and hexagon nut, sizes M8 to M27.
- Anchor type Clawbolt Pro EIW-B with internal thread, hexagon head nut and washer B, sizes M6 to M12,
- Anchor type Clawbolt Pro EIW-K with internal thread, countersunk head screw and countersunk washer K, sizes M6 to M12,
- Anchor type Clawbolt Pro EIW-S with internal thread, hexagon nut and washer S, sizes M6 to M12.

The product description is given in Annex A.

### 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

### 3 Performance of the product and references to the methods used for its assessment

### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                 | Performance                                                                               |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Characteristic resistance to tension load (static and quasi-static loading)              | Clawbolt Pro EAW see Annex B4, B5, C1 to C4<br>Clawbolt Pro EIW see Annex B8, C11 and C12 |
| Characteristic resistance to shear load (static and quasi-static loading)                | Clawbolt Pro EAW see Annex C5<br>Clawbolt Pro EIW see Annex C13                           |
| Displacements (static and quasistatic loading)                                           | Clawbolt Pro EAW see Annex C9 and C10<br>Clawbolt Pro EIW see Annex C15                   |
| Characteristic resistance and displacements for seismic performance categories C1 and C2 | Clawbolt Pro EAW see Annex C6, C9 and C10<br>Clawbolt Pro EIW No performance assessed     |

### **European Technical Assessment ETA-25/0105**

English translation prepared by DIBt



Page 4 of 36 | 23 April 2025

### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                                         |
|--------------------------|---------------------------------------------------------------------|
| Reaction to fire         | Class A1                                                            |
| Resistance to fire       | Clawbolt Pro EAW see Annex C7 and C8 Clawbolt Pro EIW see Annex C14 |

### 3.3 Aspects of durability

| Essential characteristic | Performance  |
|--------------------------|--------------|
| Durability               | See Annex B1 |

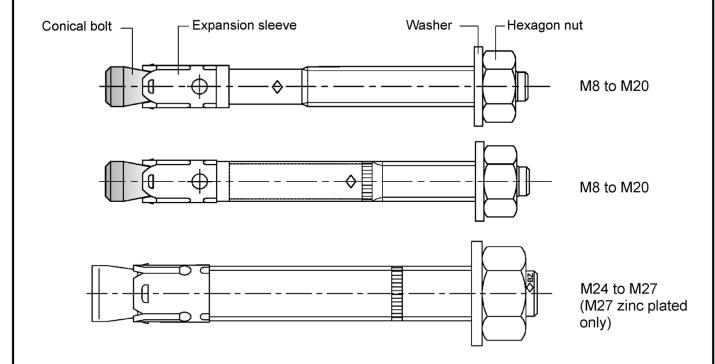
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

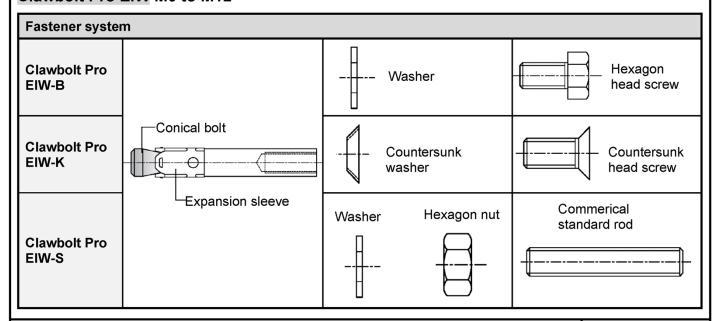
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 23 April 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Baderschneider




| Fastener version | Product description             | Intended use                                | Performance           |  |  |
|------------------|---------------------------------|---------------------------------------------|-----------------------|--|--|
| Clawbolt Pro EAW | Annex A1 - Annex A4             | Annex B1 – Annex B7                         | Annex C1 – Annex C10  |  |  |
| Clawbolt Pro ElW | Annex A1<br>Annex A5 – Annex A7 | Annex B1 – Annex B2<br>Annex B8 – Annex B10 | Annex C11 – Annex C15 |  |  |

### **Clawbolt Pro EAW**

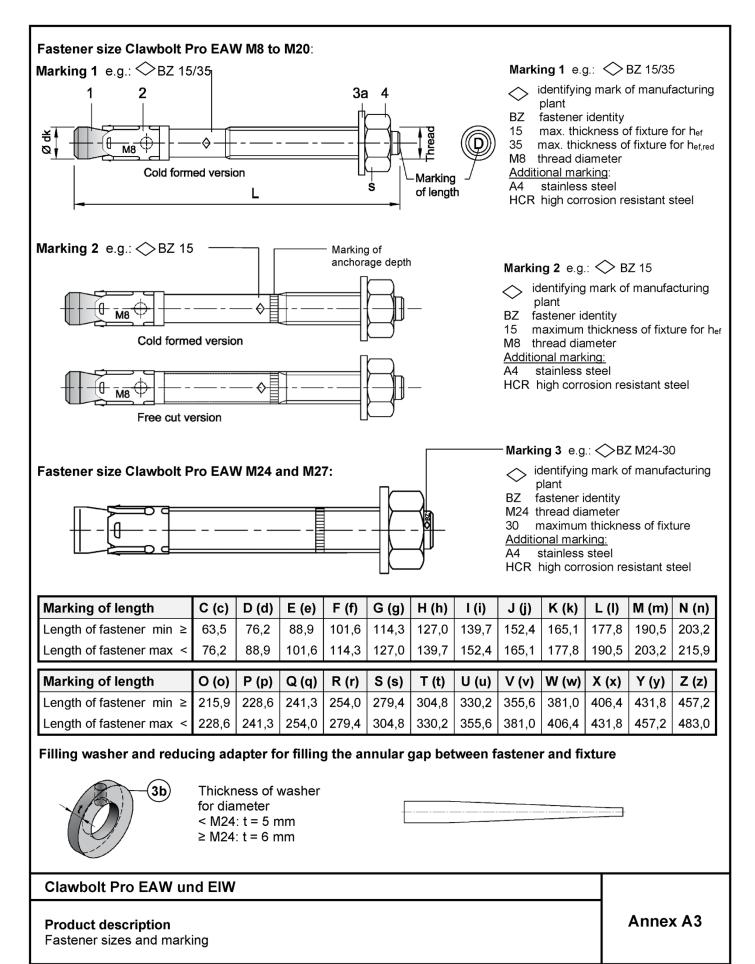


### Clawbolt Pro EIW M6 to M12



### Clawbolt Pro EAW and EIW

### **Product description**


Fastener types

Annex A1



## Intended use Clawbolt Pro EAW $h \ge h_{min,1}$ bzw. $h_{min,2}$ h<sub>1</sub> hef tfix df hef,red tfix h1,red $h \ge h_{\text{min,3}}$ Clawbolt Pro EAW und EIW Annex A2 **Product description** Installation situation Clawbolt Pro EAW



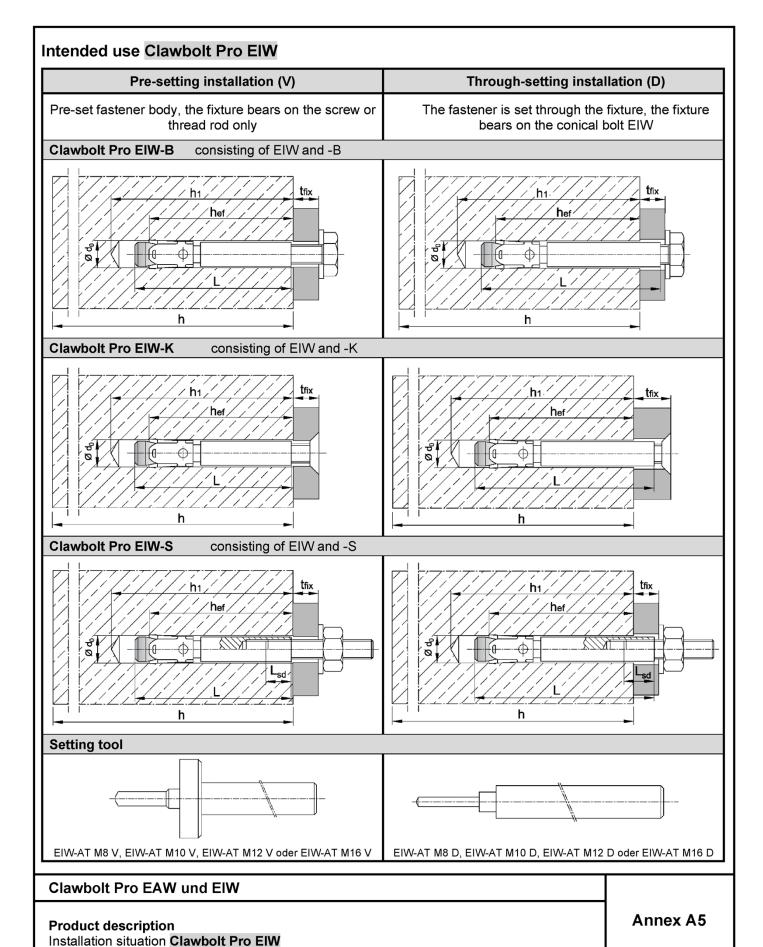




**Table A1: Fastener dimensions Clawbolt Pro EAW** 

| Fastener siz                | е                       |                      | M8                    | M10                   | M12                   | M16                  | M20                  | M24                  | M27                  |
|-----------------------------|-------------------------|----------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|
| Conicol holt                | Conical bolt —          |                      | M8                    | M10                   | M12                   | M16                  | M20                  | M24                  | M27                  |
| Conical boil                |                         |                      | 7,9                   | 9,8                   | 12,0                  | 15,7                 | 19,7                 | 24                   | 28                   |
|                             | Steel, zinc plated      | L                    | 65 + t <sub>fix</sub> | 80 + t <sub>fix</sub> | 96,5+t <sub>fix</sub> | 118+t <sub>fix</sub> | 137+t <sub>fix</sub> | 161+t <sub>fix</sub> | 178+t <sub>fix</sub> |
| Length of                   | A4, HCR                 | L                    | 65 + t <sub>fix</sub> | 80 + t <sub>fix</sub> | 96,5+t <sub>fix</sub> | 118+t <sub>fix</sub> | 137+t <sub>fix</sub> | 168+t <sub>fix</sub> | -                    |
| fastener <sup>1)</sup>      | reduced anchorage depth | L <sub>hef,red</sub> | 54 + t <sub>fix</sub> | 60 + t <sub>fix</sub> | 76,5+t <sub>fix</sub> | 98+t <sub>fix</sub>  | -                    | -                    | -                    |
| Thickness of filling washer |                         | t [mm]               | 5                     | 5                     | 5                     | 5                    | 5                    | 6                    | 6                    |
| Hexagon nut                 |                         | s                    | 13                    | 17                    | 19                    | 24                   | 30                   | 36                   | 41                   |

<sup>&</sup>lt;sup>1)</sup> With additional use of filling washer 3b the usable thickness of fixture is reduced by the thickness of filling washer t [mm]


Dimensions in mm

**Table A2: Materials Clawbolt Pro EAW** 

|     |                  | EA                                                                                                     | WMS                                                                                                    | EAW16                                                                                                              | EAWHR                                                                                          |  |
|-----|------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| No. | Part             | Steel, z                                                                                               | inc plated                                                                                             | Stainless steel                                                                                                    | High corrosion                                                                                 |  |
|     |                  | galvanized ≥ 5µm                                                                                       | sherardized ≥ 45µm                                                                                     | A4<br>(CRC III)                                                                                                    | resistant steel HCR<br>(CRC V)                                                                 |  |
| 1   | Conical bolt     | M8 to M20:<br>Cold formed or<br>machined steel,<br>galvanized,<br>cone plastic coated                  | M8 to M20:<br>Cold formed or<br>machined steel,<br>sherardized,<br>cone plastic coated                 | M8 to M20:<br>Stainless steel<br>(e.g. 1.4401, 1.4404,<br>1.4578, 1.4571)<br>EN 10088:2014,<br>cone plastic coated | M8 to M20: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, cone plastic coated |  |
|     | Threaded bolt    | M24 and M27:                                                                                           | M24 and M27:<br>steel, sherardized                                                                     | M24:<br>Stainless steel                                                                                            | M24:<br>High corrosion<br>resistant steel<br>1.4529 or 1.4565,<br>EN 10088:2014                |  |
|     | Threaded cone    | Steel, galvanized                                                                                      | M24 and M27:<br>Steel, galvanized                                                                      | (e.g. 1.4401, 1.4404)<br>EN 10088:2014                                                                             |                                                                                                |  |
| 2   | Expansion sleeve | M8 to M20:<br>Steel (e.g. 1.4301<br>or 1.4401)<br>EN 10088:2014,<br>M24 and M27:<br>Steel, zinc plated | M8 to M20:<br>Steel (e.g. 1.4301 or<br>1.4401)<br>EN 10088:2014,<br>M24 and M27:<br>Steel, zinc plated | Stainless steel<br>(e.g. 1.4401, 1.4404,<br>1.4571)<br>EN 10088:2014                                               | Stainless steel<br>(e.g. 1.4401, 1.4404,<br>1.4571)<br>EN 10088:2014                           |  |
| 3a  | Washer           | Steel, zinc plated                                                                                     | Steel, zinc plated                                                                                     | Stainless steel<br>(e.g. 1.4401, 1.4571)                                                                           | High corrosion resistant steel                                                                 |  |
| 3b  | Filling washer   |                                                                                                        |                                                                                                        | EN 10088:2014                                                                                                      | 1.4529 or 1.4565,<br>EN 10088:2014                                                             |  |
| 4   | Hexagon nut      | Steel, galvanized, coated                                                                              | Steel, zinc plated                                                                                     | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014,<br>coated                                               | High corrosion<br>resistant steel<br>1.4529 or 1.4565,<br>EN 10088:2014,<br>coated             |  |

# Product description Dimensions and materials Annex A4







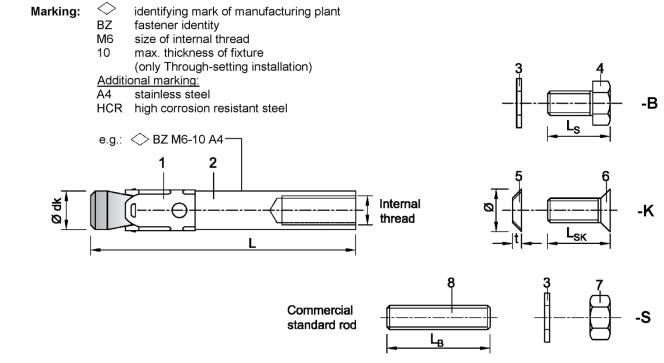



Table A3: Fastener dimensions Clawbolt Pro EIW

| No. | Fastener size                     |                     | M6                            | M8                                                                      | M10                           | M12                           |
|-----|-----------------------------------|---------------------|-------------------------------|-------------------------------------------------------------------------|-------------------------------|-------------------------------|
|     | Conical bolt with internal thread | Ø d <sub>k</sub>    | 7,9                           | 9,8                                                                     | 11,8                          | 15,7                          |
| 1   | Pre-setting installation          | L                   | 50                            | 62                                                                      | 70                            | 86                            |
|     | Through-setting installation      | L                   | 50 + t <sub>fix</sub>         | 62 + t <sub>fix</sub>                                                   | 70 + t <sub>fix</sub>         | 86 + t <sub>fix</sub>         |
| 2   | Expansion sleeve                  |                     |                               | see ta                                                                  | ble A4                        |                               |
| 3   | Washer                            |                     |                               | see ta                                                                  | ble A4                        |                               |
|     | Hexagon head screw wic            | Ith across<br>flats | 10                            | 13                                                                      | 17                            | 19                            |
| 4   | Pre-setting installation          | Ls                  | t <sub>fix</sub> + (13 to 21) | t <sub>fix</sub> + (17 to 23)                                           | t <sub>fix</sub> + (21 to 25) | t <sub>fix</sub> + (24 to 29) |
|     | Through-setting installation Ls   |                     | 14 to 20                      | 18 to 22                                                                | 20 to 22                      | 25 to 28                      |
| 5   | Countersunk Ø cour                | itersunk            | 17,3                          | 21,5                                                                    | 25,9                          | 30,9                          |
|     | washer                            | t                   | 3,9                           | 5,0                                                                     | 5,7                           | 6,7                           |
| 6   | Countersunk<br>head screw         | bit size            | Torx<br>T30                   | Torx<br>T45 (Steel, zinc<br>plated)<br>T40 (Stainless<br>steel A4, HCR) | Hexagon socket<br>6 mm        | Hexagon socket<br>8 mm        |
|     | Pre-setting installation          | Lsĸ                 | t <sub>fix</sub> + (11 to 19) | t <sub>fix</sub> + (15 to 21)                                           | t <sub>fix</sub> + (19 to 23) | t <sub>fix</sub> + (21 to 27) |
|     | Through-setting installation      | Lsĸ                 | 16 to 20                      | 20 to 25                                                                | 25                            | 30                            |
| 7   | Hexagon nut width ac              | ross flats          | 10                            | 13                                                                      | 17                            | 19                            |
| 8   | Commercial type V                 | L <sub>B</sub> ≥    | t <sub>fix</sub> + 21         | t <sub>fix</sub> + 28                                                   | t <sub>fix</sub> + 34         | t <sub>fix</sub> + 41         |
| 0   | standard rod <sup>1)</sup> type D | L <sub>B</sub> ≥    | 21                            | 28                                                                      | 34                            | 41                            |

<sup>1)</sup> acc. to specifications (Table A4)

Dimensions in mm

| Clawbolt Pro EAW und EIW                                                    |          |
|-----------------------------------------------------------------------------|----------|
| Product description Fastener parts, marking and dimensions Clawbolt Pro EIW | Annex A6 |



### **Table A4: Materials Clawbolt Pro EIW**

|     |                                                          | EIWMS                                                                    | EIW16                                                                                                | EIWHR                                                                                                             |  |
|-----|----------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| No. | Part                                                     | Steel, galvanized ≥ 5 µm<br>acc. to<br>EN ISO 4042:1999                  | Stainless steel A4<br>(CRC III)                                                                      | High corrosion<br>resistant steel HCR<br>(CRC V)                                                                  |  |
| 1   | Conical bolt<br>Clawbolt Pro EIW<br>with internal thread | Machined steel,<br>Cone plastic coated                                   | Stainless steel<br>(e.g. 1.4401, 1.4404,<br>1.4571)<br>EN 10088:2014,<br>Cone plastic coated         | High corrosion<br>resistant steel, 1.4529,<br>1.4565,<br>EN 10088:2014,<br>Cone plastic coated                    |  |
| 2   | Expansion sleeve<br>Clawbolt Pro EIW                     | Stainless steel<br>(e.g. 1.4301, 1.4401)<br>EN 10088:2014                | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014                                            | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014                                                         |  |
| 3   | Washer<br>-B / -S                                        | Steel, galvanized                                                        | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014                                            | High corrosion<br>resistant steel,<br>1.4529, 1.4565,<br>EN 10088:2014                                            |  |
| 4   | Hexagon head screw<br>-B                                 | Steel, galvanized, coated                                                | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014,<br>coated                                 | High corrosion<br>resistant steel,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>coated                                 |  |
| 5   | Countersunk washer<br>-K                                 | Steel, galvanized                                                        | Stainless steel<br>(e.g. 1.4401, 1.4404,<br>1.4571)<br>EN 10088:2014,<br>zinc plated, coated         | High corrosion<br>resistant steel,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>zinc plated, coated                    |  |
| 6   | Countersunk head<br>screw<br>-K                          | Steel, galvanized coated                                                 | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014,<br>coated                                 | High corrosion<br>resistant steel,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>coated                                 |  |
| 7   | Hexagon nut<br>-S                                        | Steel, galvanized coated                                                 | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014,<br>coated                                 | High corrosion<br>resistant steel,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>coated                                 |  |
| 8   | Commercial standard rod                                  | Property class 8.8,<br>EN ISO 898-1:2013<br>A <sub>5</sub> > 8 % ductile | Stainless steel<br>(e.g. 1.4401, 1.4571)<br>EN 10088:2014,<br>property class 70,<br>EN ISO 3506:2009 | High corrosion<br>resistant steel,<br>1.4529, 1.4565,<br>EN 10088:2014,<br>property class 70,<br>EN ISO 3506:2009 |  |

| Clawbolt Pro EAW und EIW                       |          |
|------------------------------------------------|----------|
| Product description Materials Clawbolt Pro EIW | Annex A7 |



### Specifications of intended use

| Clawbolt Pro EAW                                          |    |       |     |     |     |     |     |
|-----------------------------------------------------------|----|-------|-----|-----|-----|-----|-----|
| Standard anchorage depth                                  | M8 | M10   | M12 | M16 | M20 | M24 | M27 |
| Steel, galvanized                                         |    | ✓     |     |     |     |     |     |
| Steel, sherardized                                        |    | ✓     |     |     |     |     |     |
| Stainless steel A4 and high corrosion resistant steel HCR |    |       |     |     |     | _2) |     |
| Static or quasi-static action                             |    | ✓     |     |     |     |     |     |
| Fire exposure                                             | ✓  |       |     |     |     |     |     |
| Seismic action (C1 and C2) 1)                             |    | ✓ _2) |     |     |     | _2) |     |
|                                                           |    |       |     |     |     |     |     |

| Reduced anchorage depth 1)                                | M8       | M10 | M12 | M16 |  |
|-----------------------------------------------------------|----------|-----|-----|-----|--|
| Steel, galvanized                                         |          | ,   | ✓   |     |  |
| Steel, sherardized                                        | <b>√</b> |     |     |     |  |
| Stainless steel A4 and high corrosion resistant steel HCR | ✓        |     |     |     |  |
| Static or quasi-static action                             | <b>✓</b> |     |     |     |  |
| Fire exposure                                             | ✓        |     |     |     |  |
| Seismic action (C1 and C2)                                | _2)      |     |     |     |  |

<sup>1)</sup> Only cold formed anchors acc. to Annex A3

<sup>2)</sup> No performance assessed

| Clawbolt Pro EIW                                          | М6       | М8 | M10      | M12 |  |
|-----------------------------------------------------------|----------|----|----------|-----|--|
| Steel, galvanized                                         | <b>√</b> |    |          |     |  |
| Stainless steel A4 and high corrosion resistant steel HCR | ✓        |    |          |     |  |
| Static or quasi-static action                             | ✓        |    |          |     |  |
| Fire exposure                                             | <b>√</b> |    | <b>✓</b> |     |  |
| Seismic action (C1 and C2)                                | _1)      |    |          |     |  |

<sup>1)</sup> No performance assessed

### Base materials:

- Compacted, reinforced or unreinforced normal weight concrete (without fibers) according to EN 206:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016
- Cracked or uncracked concrete

### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all materials
- For all other conditions: Intended use of materials according to Annex A4, Table A2 or Annex A7, Table A4 corresponding corrosion resistance classes CRC according to EN 1993-1-4:2006+A1:2015

| Clawbolt Pro EAW und EIW       |          |
|--------------------------------|----------|
| Intended use<br>Specifications | Annex B1 |



### Specifications of intended use

### Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Dimensioning of fasteners under static or quasi-static action, seismic action or fire exposure according to EN 1992-4:2018 in conjunction with Technical Report TR 055, Edition February 2018

### Installation:

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Hole drilling by hammer drill bit or vacuum drill bit
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Optionally, the annular gap between fixture and stud of the Clawbolt Pro EAW can be filled to reduce the hole. For this purpose, the filling washer (3b) must be used in addition to the supplied washer (3a). For filling use high-strength mortar with compressive strength ≥ 40 N/mm².
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

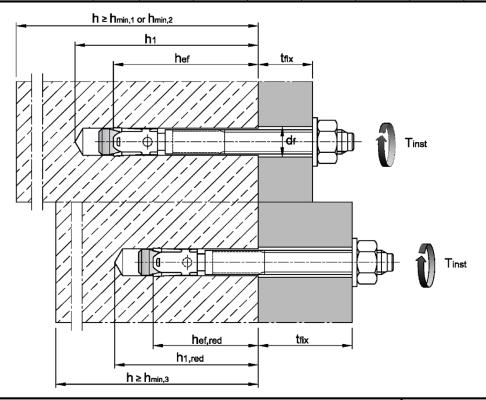

| Clawbolt Pro EAW und EIW       |          |
|--------------------------------|----------|
| Intended use<br>Specifications | Annex B2 |



Table B1: Installation parameters, Clawbolt Pro EAW

| Fastener siz            | е                          |                         |      | М8   | M10   | M12  | M16  | M20   | M24   | M27   |
|-------------------------|----------------------------|-------------------------|------|------|-------|------|------|-------|-------|-------|
| Nominal drill           | hole diameter              | <b>d</b> <sub>0</sub>   | [mm] | 8    | 10    | 12   | 16   | 20    | 24    | 28    |
| Cutting diame           | eter of drill bit          | $d_{\text{cut}} \leq$   | [mm] | 8,45 | 10,45 | 12,5 | 16,5 | 20,55 | 24,55 | 28,55 |
|                         | Steel, galvanized          | T <sub>inst</sub>       | [Nm] | 20   | 25    | 45   | 90   | 160   | 200   | 300   |
| Installation            | Steel, sherardized         | T <sub>inst</sub>       | [Nm] | 16   | 22    | 40   | 90   | 160   | 260   | 300   |
| torque                  | Stainless steel<br>A4, HCR | T <sub>inst</sub>       | [Nm] | 20   | 35    | 50   | 110  | 200   | 290   | _1)   |
| Diameter of o           |                            | d <sub>f</sub> ≤        | [mm] | 9    | 12    | 14   | 18   | 22    | 26    | 30    |
| Standard an             | chorage depth              |                         |      |      |       |      |      |       |       |       |
| Depth of                | Steel, zinc plated         | $h_1\geq$               | [mm] | 60   | 75    | 90   | 110  | 125   | 145   | 160   |
| drill hole              | Stainless steel<br>A4, HCR | <b>h</b> ₁ ≥            | [mm] | 60   | 75    | 90   | 110  | 125   | 155   | _1)   |
| Effective               | Steel, zinc plated         | h <sub>ef</sub>         | [mm] | 46   | 60    | 70   | 85   | 100   | 115   | 125   |
| anchorage<br>depth      | Stainless steel<br>A4, HCR | h <sub>ef</sub>         | [mm] | 46   | 60    | 70   | 85   | 100   | 125   | _1)   |
| Reduced anchorage depth |                            |                         |      |      |       |      |      |       |       |       |
| Depth of drill          | hole                       | $h_{1,\text{red}} \geq$ | [mm] | 49   | 55    | 70   | 90   |       |       |       |
| Reduced effe<br>depth   | ective anchorage           | $h_{\text{ef,red}}$     | [mm] | 35   | 40    | 50   | 65   | _1)   | _1)   | _1)   |

1) No performance assessed



### Clawbolt Pro EAW und EIW

Intended use Installation parameters

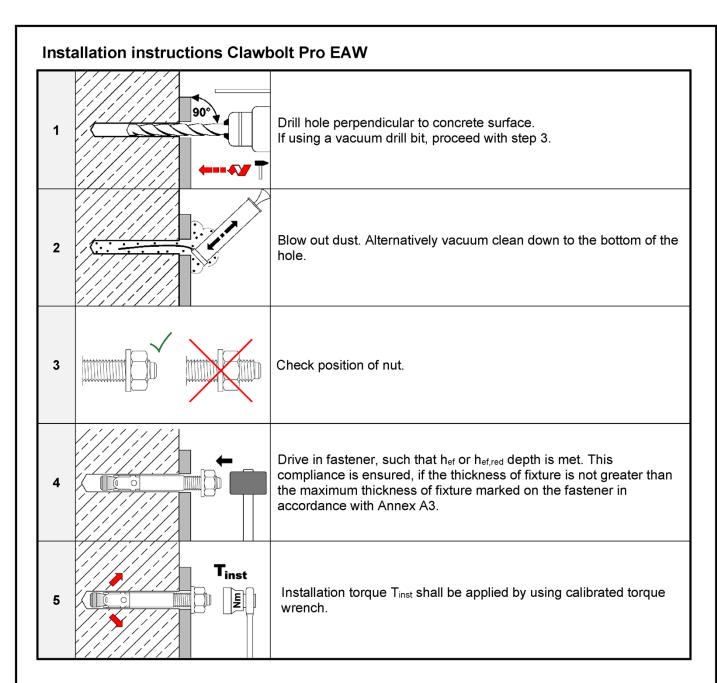


| Fastener size                                                   |                     |              | M8   | M10 | M12       | M16         | M20       | M24        | M27 |
|-----------------------------------------------------------------|---------------------|--------------|------|-----|-----------|-------------|-----------|------------|-----|
| Standard thickness of concrete                                  | member              |              |      |     |           |             |           |            |     |
| Steel zinc plated                                               |                     |              |      |     |           |             |           |            |     |
| Standard thickness of member                                    | h <sub>min,1</sub>  | [mm]         | 100  | 120 | 140       | 170         | 200       | 230        | 250 |
| Cracked concrete                                                |                     |              |      |     | ·         |             |           |            |     |
| Minimum spacing                                                 | $\overline{}$       | [mm]         | 40   | 45  | 60        | 60          | 95        | 100        | 125 |
|                                                                 |                     | [mm]         | 70   | 70  | 100       | 100         | 150       | 180        | 300 |
| Minimum edge distance                                           |                     | [mm]         | 40   | 45  | 60        | 60          | 95        | 100        | 180 |
|                                                                 | für s ≥             | [mm]         | 80   | 90  | 140       | 180         | 200       | 220        | 540 |
| Uncracked concrete                                              |                     |              | - 10 |     |           |             |           | 100        |     |
| Minimum spacing                                                 | $\overline{}$       | [mm]         | 40   | 45  | 60        | 65          | 90        | 100        | 125 |
|                                                                 |                     | [mm]         | 80   | 70  | 120       | 120         | 180       | 180        | 300 |
| Minimum edge distance                                           |                     | [mm]         | 50   | 50  | 75        | 80          | 130       | 100        | 180 |
| 24-1-1                                                          | für s ≥             | [mm]         | 100  | 100 | 150       | 150         | 240       | 220        | 540 |
| Stainless steel A4, HCR                                         | h                   | [mm=1        | 100  | 100 | 140       | 100         | 200       | 250        | _1) |
| Standard thickness of member                                    | h <sub>min,1</sub>  | [mm]         | 100  | 120 | 140       | 160         | 200       | 250        | _'' |
| Cracked concrete                                                |                     | [mm1         | 40   | 50  | 60        | 60          | 95        | 125        |     |
| Minimum spacing                                                 |                     | [mm]         | 70   | 75  | 100       | 100         | 150       | 125        |     |
|                                                                 |                     | [mm]         | 40   | 55  | 60        | 60          | 95        |            | _1) |
| Minimum edge distance                                           |                     | [mm]         | 80   | 90  | 140       | 180         | 200       | 125<br>125 | 4   |
| Uncracked concrete                                              | für s ≥             | [mm]         | 00   | 90  | 140       | 100         | 200       | 123        |     |
| Dictacked colletete                                             | Smin                | [mm]         | 40   | 50  | 60        | 65          | 90        | 125        |     |
| Minimum spacing                                                 |                     |              | 80   | 75  | 120       | 120         | 180       | 125        | 1   |
|                                                                 |                     | [mm]         |      |     |           |             |           | 125        | _1) |
| Minimum edge distance                                           |                     | [mm]         | 50   | 60  | 75        | 80          | 130       |            |     |
| Minimum Abialman as as a sure of                                |                     | [mm]         | 100  | 120 | 150       | 150         | 240       | 125        |     |
| Minimum thickness of concrete                                   |                     |              |      |     |           |             |           |            |     |
| Steel zinc plated, stainless stee                               | · ·                 |              | 00   | 100 | 100       | 140         | _1)       | _1)        | _1) |
| Minimum thickness of member                                     | h <sub>min,2</sub>  | [mm]         | 80   | 100 | 120       | 140         | - ' /     | - ' /      | '/  |
| Cracked concrete                                                | 0 .                 | [mm]         | 40   | 45  | 60        | 70          |           |            |     |
| Minimum spacing                                                 |                     | [mm]         | 70   | 90  | 100       | 160         |           |            |     |
|                                                                 |                     | [mm]<br>[mm] | 40   | 50  | 60        | 80          | _1)       | _1)        | _1) |
| Minimum edge distance                                           |                     | [mm]         | 80   | 115 | 140       | 180         |           |            |     |
| Uncracked concrete                                              | iui 5 Z             | [111111]     | 00   | 113 | 140       | 100         |           |            |     |
| Sheracked concrete                                              | Smin                | [mm]         | 40   | 60  | 60        | 80          |           |            |     |
| Minimum spacing                                                 |                     | [mm]         | 80   | 140 | 120       | 180         |           |            |     |
|                                                                 |                     | • •          | 50   | 90  | 75        | 90          | _1)       | _1)        | _1) |
| Minimum edge distance                                           |                     | [mm]         |      |     |           |             |           |            |     |
|                                                                 | für s ≥             | [mm]         | 100  | 140 | 150       | 200         |           |            |     |
| Fire exposure from one side                                     |                     |              |      |     |           |             |           |            |     |
| Minimum spacing                                                 | S <sub>min,fi</sub> | [mm]         |      |     |           | I ambient t |           |            |     |
| Minimum edge distance                                           | C <sub>min,fi</sub> | [mm]         |      |     | See norma | l ambient t | emperatui | re         |     |
| Fire exposure from more than o                                  |                     |              |      |     |           |             |           |            |     |
| Minimum spacing                                                 | S <sub>min,fi</sub> | [mm]         |      |     | see norma | l ambient t |           | re         |     |
| Minimum edge distance                                           | C <sub>min,fi</sub> | [mm]         |      |     |           | ≥ 300 mm    |           |            |     |
| ntermediate values by linear interpo<br>No performance assessed | olation.            |              |      |     |           |             |           |            |     |
| Clawbolt Pro EAW und EIV                                        | V                   |              |      |     |           |             |           |            |     |



Table B3: Minimum spacings and edge distances, reduced anchorage depth, Clawbolt Pro EAW

| Fastener size                         |                     |      | M8          | M10           | M12            | M16 |  |  |  |
|---------------------------------------|---------------------|------|-------------|---------------|----------------|-----|--|--|--|
| Minimum thickness of concrete member  | h <sub>min,3</sub>  | [mm] | 80          | 80            | 100            | 140 |  |  |  |
| Cracked concrete                      |                     |      |             |               |                |     |  |  |  |
| Minimum spacing                       | Smin                | [mm] | 50          | 50            | 50             | 65  |  |  |  |
| within spacing                        | für c≥              | [mm] | 60          | 100           | 160            | 170 |  |  |  |
| Minimum edge distance                 | C <sub>min</sub>    | [mm] | 40          | 65            | 65             | 100 |  |  |  |
| Willimitani edge distance             | für s ≥             | [mm] | 185         | 180           | 250            | 250 |  |  |  |
| Uncracked concrete                    |                     |      |             |               |                |     |  |  |  |
| Minimum spacing                       | Smin                | [mm] | 50          | 50            | 50             | 65  |  |  |  |
| willimum spacing                      | für c ≥             | [mm] | 60          | 100           | 160            | 170 |  |  |  |
| Minimum edge distance                 | Cmin                | [mm] | 40          | 65            | 100            | 170 |  |  |  |
| Willimitani edge distance             | für s ≥             | [mm] | 185         | 180           | 185            | 65  |  |  |  |
| Fire exposure from one side           |                     |      |             |               |                |     |  |  |  |
| Minimum spacing                       | S <sub>min,fi</sub> | [mm] | S           | ee normal amb | ient temperatu | ire |  |  |  |
| Minimum edge distance                 | C <sub>min,fi</sub> | [mm] | ıre         |               |                |     |  |  |  |
| Fire exposure from more than one side |                     |      |             |               |                |     |  |  |  |
| Minimum spacing                       | S <sub>min,fi</sub> | [mm] | S           | ee normal amb | ient temperatu | ire |  |  |  |
| Minimum edge distance                 | C <sub>min,fi</sub> | [mm] | n] ≥ 300 mm |               |                |     |  |  |  |


Intermediate values by linear interpolation.

Clawbolt Pro EAW und EIW

Intended use

Minimum spacings and edge distances for reduced anchorage depth





| Clawbolt Pro EAW und EIW                  |          |
|-------------------------------------------|----------|
| Intended Use<br>Installation instructions | Annex B6 |



# Installation instructions Clawbolt Pro EAW with filling of annular gap Drill hole perpendicular to concrete surface. If using a vacuum drill bit, proceed with step 3a. Blow out dust. Alternatively vacuum clean down to the bottom of the hole. Check position of nut. Fit the filling washer to the fastener. The thickness of the filling washer must be taken into account with t<sub>fix</sub>. Drive in fastener with filling washer, such that her or hetred depth is met. This compliance is ensured, if the thickness of fixture is 5mm smaller (or 6mm when ≥ M24) than the maximum thickness of fixture marked on

| 4 |                   | Drive in fastener with filling washer, such that hef or hef,red depth is met. This compliance is ensured, if the thickness of fixture is 5mm smaller (or 6mm when ≥ M24) than the maximum thickness of fixture marked on the fastener in accordance with Annex A3.  |
|---|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | T <sub>inst</sub> | Installation torque T <sub>inst</sub> shall be applied by using calibrated torque wrench.                                                                                                                                                                           |
| 6 |                   | Fill the annular gap between stud and fixture with high stregth mortar with compressive strength ≥ 40 N/mm².  Use enclosed reducing adapter. Observe the processing information of the mortar!  The annular gap is completely filled, when excess mortar seeps out. |

| ŀ | Clawbolt Pro EAW und EIW                                      |          |
|---|---------------------------------------------------------------|----------|
|   | Intended Use<br>Installation instructions with filling washer | Annex B7 |



Table B4: Installation parameters Clawbolt Pro EIW

| Fastener size                                   |                       |                           |      | M6   | M8    | M10  | M12  |
|-------------------------------------------------|-----------------------|---------------------------|------|------|-------|------|------|
| Effective anchorage depth                       |                       | h <sub>ef</sub>           | [mm] | 45   | 58    | 65   | 80   |
| Drill hole diameter                             |                       | <b>d</b> <sub>0</sub>     | [mm] | 8    | 10    | 12   | 16   |
| Cutting diameter of drill bit                   |                       | $d_{\text{cut}} \leq$     | [mm] | 8,45 | 10,45 | 12,5 | 16,5 |
| Depth of drill hole                             |                       | $h_1 \geq$                | [mm] | 60   | 75    | 90   | 105  |
| Screwing depth of threaded rod                  |                       | $L_{\text{sd}}^{2)} \geq$ | [mm] | 9    | 12    | 15   | 18   |
| In stallation towns                             |                       | EIW-B                     | [Nm] | 10   | 30    | 30   | 55   |
| Installation torque, steel zinc plated          | $T_{inst}$            | EIW-K                     | [Nm] | 10   | 25    | 40   | 50   |
| steel zille plated                              |                       | EIW-S                     | [Nm] | 8    | 25    | 30   | 45   |
| In stallation towns                             |                       | EIW-B                     | [Nm] | 15   | 40    | 50   | 100  |
| Installation torque,<br>stainless steel A4, HCR | $T_{inst}$            | EIW-K                     | [Nm] | 12   | 25    | 45   | 60   |
| stairliess steel A4, HOIX                       |                       | EIW-S                     | [Nm] | 8    | 25    | 40   | 80   |
| Pre-setting installation                        |                       |                           |      |      |       |      |      |
| Diameter of clearance hole in the fixtu         | ure                   | $d_f \leq$                | [mm] | 7    | 9     | 12   | 14   |
|                                                 |                       | EIW-B                     | [mm] | 1    | 1     | 1    | 1    |
| Minimum thickness of fixture                    | $t_{\text{fix}} \geq$ | EIW-K                     | [mm] | 5    | 7     | 8    | 9    |
|                                                 |                       | EIW-S                     | [mm] | 1    | 1     | 1    | 1    |
| Through-setting installation                    |                       |                           |      |      |       |      |      |
| Diameter of clearance hole in the fixtu         | ure                   | $d_f \leq$                | [mm] | 9    | 12    | 14   | 18   |
|                                                 |                       | EIW-B                     | [mm  | 5    | 7     | 8    | 9    |
| Minimum thickness of fixture 1)                 | $t_{\text{fix}} \geq$ | EIW-K                     | [mm] | 9    | 12    | 14   | 16   |
|                                                 |                       | EIW-S                     | [mm] | 5    | 7     | 8    | 9    |

<sup>1)</sup> The minimum thickness of fixture can be reduced to the value of pre-setting installation, if the shear load at steel failure is designed with lever arm.

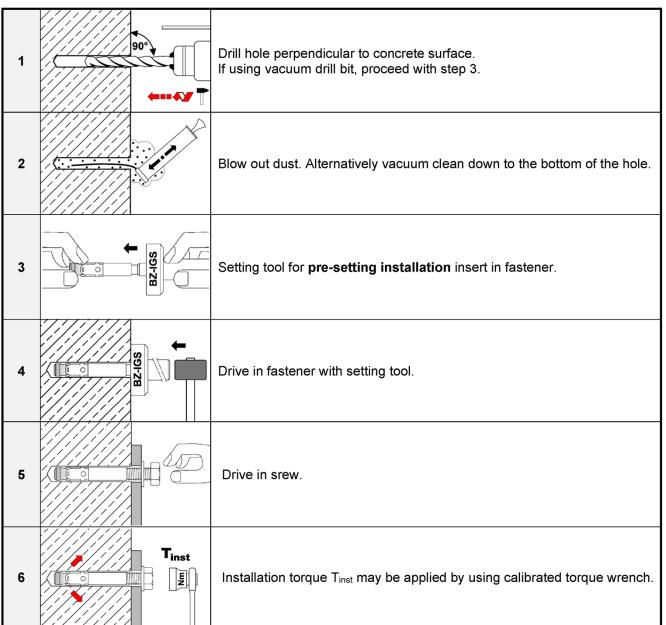
### Table B5: Minimum spacings and edge distances Clawbolt Pro EIW

| Fastener size                              |                     |      | M6                     | M8                     | M10  | M12 |  |  |
|--------------------------------------------|---------------------|------|------------------------|------------------------|------|-----|--|--|
| Minimum thickness of concrete member       | h <sub>min</sub>    | [mm] | 100                    | 120                    | 130  | 160 |  |  |
| Cracked concrete                           |                     |      |                        |                        |      |     |  |  |
| Minimum angaing                            | Smin                | [mm] | 50                     | 60                     | 70   | 80  |  |  |
| Minimum spacing                            | für c ≥             | [mm] | 60                     | 80                     | 100  | 120 |  |  |
| Minimum adaa distansa                      | Cmin                | [mm] | 50                     | 60                     | 70   | 80  |  |  |
| Minimum edge distance                      | für s ≥             | [mm] | 75                     | 100                    | 100  | 120 |  |  |
| Uncracked concrete                         |                     |      |                        |                        |      |     |  |  |
| Minimum anadina                            | Smin                | [mm] | 50                     | 60                     | 65   | 80  |  |  |
| Minimum spacing                            | für c ≥             | [mm] | 80                     | 100                    | 120  | 160 |  |  |
| Minimum adaa diatanaa                      | Cmin                | [mm] | 50                     | 60                     | 70   | 100 |  |  |
| Minimum edge distance                      | für s ≥             | [mm] | 115                    | 155                    | 170  | 210 |  |  |
| Fire exposure from one side                |                     |      |                        |                        |      |     |  |  |
| Minimum spacing                            | S <sub>min,fi</sub> | [mm] | See normal temperature |                        |      |     |  |  |
| Minimum edge distance                      | C <sub>min,fi</sub> | [mm] | See normal temperature |                        |      |     |  |  |
| Fire exposure from more than one side      |                     |      |                        |                        |      |     |  |  |
| Minimum spacing                            | S <sub>min,fi</sub> | [mm] |                        | See normal temperature |      |     |  |  |
| Minimum edge distance                      | C <sub>min,fi</sub> | [mm] |                        | ≥ 300                  | 0 mm |     |  |  |
| ntermediate values by linear interpolation |                     |      |                        |                        |      |     |  |  |

Intermediate values by linear interpolation.

### Clawbolt Pro EAW und EIW

### Intended use


Installation parameters, minimum spacings and edge distances Clawbolt Pro EIW

<sup>&</sup>lt;sup>2)</sup> see Annex A5

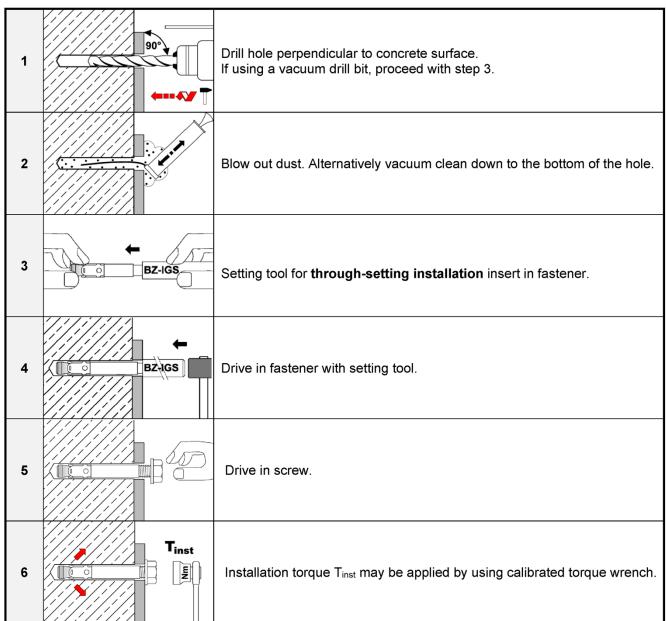


### Installation instructions Clawbolt Pro EIW

### **Pre-setting installation**



### Clawbolt Pro EAW und EIW


### **Intended Use**

Installation instructions for pre-setting installation Clawbolt Pro EIW



### Installation instructions Clawbolt Pro EIW

### Through-setting installation



### Clawbolt Pro EAW und EIW

### Intended Use

Installation instructions for through-setting installation Clawbolt Pro EIW



Table C1: Characteristic values for tension loads, Clawbolt Pro EAWMS (zinc plated), cracked concrete, static and quasi-static action

| Fastener size                                                     |                                    |      | M8                      | M10 | M12  | M16                                        | M20 | M24  | M27  |
|-------------------------------------------------------------------|------------------------------------|------|-------------------------|-----|------|--------------------------------------------|-----|------|------|
| Installation factor                                               | γinst                              | [-]  |                         |     |      | 1,0                                        |     |      |      |
| Steel failure                                                     |                                    |      |                         |     |      |                                            |     |      |      |
| Characteristic resistance                                         | $N_{Rk,s}$                         | [kN] | 16                      | 27  | 40   | 60                                         | 86  | 126  | 196  |
| Partial factor                                                    | γMs                                | [-]  | 1,                      | 53  | 1    | ,5                                         | 1,6 | 1    | ,5   |
| Pull-out                                                          |                                    |      |                         |     |      |                                            |     |      |      |
| Standard anchorage depth                                          |                                    |      |                         |     |      |                                            |     |      |      |
| Characteristic resistance in cracked concrete C20/25              | $N_{Rk,p}$                         | [kN] | 5                       | 9   | 16   | 25                                         | 36  | 44,4 | 50,3 |
| Reduced anchorage depth                                           |                                    |      |                         |     |      |                                            |     |      |      |
| Characteristic resistance in cracked concrete C20/25              | $N_{Rk,p}$                         | [kN] | 5                       | 7,5 | 12,7 | 18,9                                       | _1) | _1)  | _1)  |
| Increasing factor for $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25) | ψс                                 | [-]  |                         |     |      | $\left(\!\frac{f_{ck}}{20}\!\right)^{0,5}$ |     |      |      |
| Concrete cone failure                                             |                                    |      |                         |     |      |                                            |     |      |      |
| Effective anchorage depth                                         | h <sub>ef</sub>                    | [mm] | 46                      | 60  | 70   | 85                                         | 100 | 115  | 125  |
| Reduced anchorage depth                                           | h <sub>ef,red</sub>                | [mm] | <b>35</b> <sup>2)</sup> | 40  | 50   | 65                                         | _1) | _1)  | _1)  |
| Factor for cracked concrete                                       | $\mathbf{k}_1 = \mathbf{k}_{cr,N}$ | [-]  |                         |     |      | 7,7                                        |     |      |      |

<sup>1)</sup> No performance asessed

### Clawbolt Pro EAW und EIW

### **Performance**

Characteristic values for **tension loads**, Clawbolt Pro EAWMS (**zinc plated**), **cracked concrete**, static and quasi-static action

Annex C1

<sup>&</sup>lt;sup>2)</sup> Restricted to the use of structural components with h<sub>ef</sub> < 40mm which are statically indeterminate and subject to internal exposure conditions only



### Table C2: Characteristic values for tension loads, Clawbolt Pro EAW16 and EAWHR (A4 / HCR), cracked concrete, static and quasi-static action

| Fastener size                                                     |                     |      | M8                      | M10 | M12                              | M16                                | M20  | M24 |
|-------------------------------------------------------------------|---------------------|------|-------------------------|-----|----------------------------------|------------------------------------|------|-----|
| Installation factor                                               | γinst               | [-]  | 1,0                     |     |                                  |                                    |      |     |
| Steel failure                                                     |                     |      |                         |     |                                  |                                    |      |     |
| Characteristic resistance                                         | $N_{Rk,s}$          | [kN] | 16                      | 27  | 40                               | 64                                 | 108  | 110 |
| Partial factor                                                    | γMs                 | [-]  |                         | 1   | ,5                               |                                    | 1,68 | 1,5 |
| Pull-out                                                          |                     |      |                         |     |                                  |                                    |      |     |
| Standard anchorage depth                                          |                     |      |                         |     |                                  |                                    |      |     |
| Characteristic resistance in cracked concrete C20/25              | $N_{Rk,p}$          | [kN] | 5                       | 9   | 16                               | 25                                 | 36   | 40  |
| Reduced anchorage depth                                           |                     |      |                         |     |                                  |                                    |      |     |
| Characteristic resistance in cracked concrete C20/25              | $N_{Rk,p}$          | [kN] | 5                       | 7,5 | 12,7                             | 18,9                               | _1)  | _1) |
| Increasing factor for $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25) | ψс                  | [-]  |                         |     | $\left(\frac{f_{ck}}{20}\right)$ | $\left(\frac{1}{100}\right)^{0.5}$ |      |     |
| Concrete cone failure                                             |                     |      |                         |     |                                  |                                    |      |     |
| Effective anchorage depth                                         | h <sub>ef</sub>     | [mm] | 46                      | 60  | 70                               | 85                                 | 100  | 125 |
| Reduced anchorage depth                                           | h <sub>ef,red</sub> | [mm] | <b>35</b> <sup>2)</sup> | 40  | 50                               | 65                                 | _1)  | _1) |
| Factor for cracked concrete                                       | <b>k</b> cr,N       | [-]  |                         |     | 7                                | ,7                                 |      |     |

<sup>1)</sup> No performance assessed.

### Clawbolt Pro EAW und EIW

### **Performance**

Characteristic values for **tension loads**, Clawbolt Pro EAW16 and EAWHR **(A4 / HCR)**, **cracked concrete**, static and quasi-static action

<sup>&</sup>lt;sup>2)</sup> Restricted to the use of structural components with h<sub>ef</sub> < 40mm which are statically indeterminate and subject to internal exposure conditions only



Table C3: Characteristic values for tension loads, Clawbolt Pro EAWMS (zinc plated), uncracked concrete, static and quasi-static action

| Fastener size                                                                                                                |                                            |       | M8               | M10                 | M12             | M16                                    | M20                 | M24                 | M27                 |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------|------------------|---------------------|-----------------|----------------------------------------|---------------------|---------------------|---------------------|
| Installation factor                                                                                                          | γinst                                      | [-]   |                  | '                   |                 | 1,0                                    |                     |                     |                     |
| Steel failure                                                                                                                |                                            |       |                  |                     |                 |                                        |                     |                     |                     |
| Characteristic resistance                                                                                                    | $N_{Rk,s}$                                 | [kN]  | 16               | 27                  | 40              | 60                                     | 86                  | 126                 | 196                 |
| Partial factor                                                                                                               | γMs                                        | [-]   | 1,               | 53                  | 1               | ,5                                     | 1,6                 | 1                   | ,5                  |
| Pull-out                                                                                                                     | •                                          |       | ,                |                     |                 | ,                                      | ,                   |                     |                     |
| Standard anchorage depth                                                                                                     |                                            |       |                  |                     |                 |                                        |                     |                     |                     |
| Characteristic resistance in                                                                                                 | NI                                         | [LNI] | 10               | 16                  | 25              | 25                                     | 51                  | 62.0                | 71.2                |
| uncracked concrete C20/25                                                                                                    | N <sub>Rk,p</sub>                          | [kN]  | 12               | 16                  | 25              | 35                                     | 51                  | 62,9                | 71,3                |
| Reduced anchorage depth                                                                                                      |                                            |       |                  | ,                   |                 |                                        |                     |                     |                     |
| Characteristic resistance in                                                                                                 | $N_{Rk,p}$                                 | [kN]  | 7,5              | 9                   | 18              | 26,7                                   | _1)                 | _1)                 | _1)                 |
| uncracked concrete C20/25                                                                                                    |                                            |       | ,                |                     |                 | ,                                      |                     |                     |                     |
| Splitting                                                                                                                    |                                            |       |                  |                     |                 |                                        |                     |                     |                     |
| Standard anchorage depth                                                                                                     | £ 4 -                                      |       | (The bi          |                     |                 | . 4                                    |                     |                     |                     |
| <u>Splitting for standard thickness o</u> c <sub>cr,sp</sub> may be linearly interpolated for the                            |                                            |       |                  |                     |                 |                                        | se 2 may b          | e applied;          |                     |
| Standard thickness of concrete                                                                                               | h <sub>min,1</sub> ≥                       |       | 100              | 120                 | 140             | 170                                    | 200                 | 230                 | 250                 |
| Case 1                                                                                                                       | ***************************************    | []    | 100              | 120                 | 1 10            | 170                                    |                     | 200                 | 200                 |
| Characteristic resistance in                                                                                                 |                                            |       |                  |                     |                 |                                        |                     |                     |                     |
| uncracked concrete C20/25                                                                                                    | $N^0$ <sub>Rk,sp</sub>                     | [kN]  | 9                | 12                  | 20              | 30                                     | 40                  | 62,3                | 50                  |
| Edge distance                                                                                                                | C <sub>cr,sp</sub>                         | [mm]  |                  | 1,5 h <sub>ef</sub> |                 |                                        |                     |                     |                     |
| Case 2                                                                                                                       |                                            |       |                  |                     |                 |                                        |                     |                     |                     |
| Characteristic resistance                                                                                                    | $N^0_{Rk,sp}$                              | [kN]  | 12               | 16                  | 25              | 35                                     | 50,5                | 62,3                | 70,6                |
| in uncracked concrete C20/25                                                                                                 |                                            |       | 12               |                     |                 | 00                                     |                     |                     |                     |
| Edge distance                                                                                                                | C <sub>cr,sp</sub>                         | [mm]  |                  | 2ł                  | <b>1</b> ef     |                                        | 2,2 h <sub>ef</sub> | 1,5 h <sub>ef</sub> | 2,5 h <sub>ef</sub> |
| Splitting for minimum thickness of                                                                                           | of concrete                                | memb  | <u>er</u>        |                     |                 |                                        | 1                   | 1                   |                     |
| Minimum thickness of concrete                                                                                                | h <sub>min,2</sub> ≥                       | [mm]  | 80               | 100                 | 120             | 140                                    |                     |                     |                     |
| Characteristic resistance in uncracked concrete C20/25                                                                       | $N^0_{Rk,sp}$                              | [kN]  | 12               | 16                  | 25              | 35                                     | _1)                 | _1)                 | _1)                 |
| Edge distance                                                                                                                | C <sub>cr,sp</sub>                         | [mm]  |                  | 2,5                 | h <sub>ef</sub> |                                        |                     |                     |                     |
| Reduced anchorage depth                                                                                                      |                                            |       |                  |                     |                 |                                        |                     |                     |                     |
| Minimum thickness of concrete                                                                                                | h <sub>min,3</sub> ≥                       | [mm]  | 80               | 80                  | 100             | 140                                    |                     |                     |                     |
| Characteristic resistance in uncracked concrete C20/25                                                                       | $N^0_{Rk,sp}$                              | [kN]  | 7,5              | 9                   | 17,9            | 26,5                                   | _1)                 | _1)                 | _1)                 |
| Edge distance                                                                                                                | C <sub>cr,sp</sub>                         | [mm]  | 100              | 100                 | 125             | 150                                    | 1                   |                     |                     |
| Increasing factor                                                                                                            | ·                                          |       |                  |                     |                 | √f 0,5                                 |                     |                     |                     |
| $\begin{split} N_{Rk,p} &= \psi_c \cdot N_{Rk,p}  (C20/25) \\ N^0_{Rk,sp} &= \psi_c \cdot N^0_{Rk,sp}  (C20/25) \end{split}$ | ψc                                         | [-]   |                  |                     |                 | $\left(\frac{f_{ck}}{20}\right)^{0.5}$ |                     |                     |                     |
| Concrete cone failure                                                                                                        |                                            |       |                  |                     |                 |                                        |                     |                     |                     |
| Effective anchorage depth                                                                                                    | h <sub>ef</sub>                            | [mm]  | 46               | 60                  | 70              | 85                                     | 100                 | 115                 | 125                 |
| Reduced anchorage depth                                                                                                      | h <sub>ef,red</sub>                        | [mm]  | 35 <sup>2)</sup> | 40                  | 50              | 65                                     | _1)                 | _1)                 | _1)                 |
| Factor for uncracked concrete                                                                                                | $\mathbf{k}_1 = \mathbf{k}_{\text{ucr},N}$ | [-]   |                  | 1                   | l               | 11,0                                   | I                   | ı                   |                     |
| No performance asessed.                                                                                                      |                                            |       |                  |                     |                 | .,-                                    |                     |                     |                     |

No performance asessed.

### Clawbolt Pro EAW und EIW

### **Performance**

Characteristic values for **tension loads**, Clawbolt Pro EAWMS (**zinc plated**), **uncracked concrete**, static and quasi-static action

**Annex C3** 

<sup>&</sup>lt;sup>2)</sup> Restricted to the use of structural components with hef < 40mm which are statically indeterminate and subject to internal



Table C4: Characteristic values for tension loads, Clawbolt Pro EAW16 and EAWHR (A4 / HCR), uncracked concrete, static and quasi-static action

| Characteristic resistance   N <sub>RK,S</sub>   [KN]   16   27   40   64   108   110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fastener size                                                                                                   |                      |             | M8  | M10 | M12                              | M16  | M20        | M24     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|-------------|-----|-----|----------------------------------|------|------------|---------|
| Characteristic resistance   No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Installation factor                                                                                             | γinst                | [-]         |     |     | 1                                | ,0   |            |         |
| Partial factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel failure                                                                                                   |                      |             |     |     |                                  |      |            |         |
| Partial factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Characteristic resistance                                                                                       | N <sub>Rk.s</sub>    | [kN]        | 16  | 27  | 40                               | 64   | 108        | 110     |
| Standard anchorage depth   Standard thickness of concrete member (The higher resistance of case 1 and case 2 may be applied; Notice   Standard thickness of concrete   Standard thickn                                                                                                                                                                                                                                                                                                           | Partial factor                                                                                                  |                      |             |     | 1   | .5                               | l    | 1.68       | 1.5     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pull-out                                                                                                        | / INC                | .,          |     |     | , -                              |      | , , , ,    | .,-     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                      |             |     |     |                                  |      |            |         |
| Characteristic resistance in incracked concrete C20/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Characteristic resistance in uncracked concrete C20/25                                                          | $N_{Rk,p}$           | [kN]        | 12  | 16  | 25                               | 35   | 51         | 71,3    |
| Incracked concrete C20/25   NRR, p   EN   7,5   9   18   26,7   -7   -7   -7   Splitting   Standard anchorage depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reduced anchorage depth                                                                                         |                      |             |     |     |                                  |      |            |         |
| Standard anchorage depth Splitting for standard thickness of concrete member (The higher resistance of case 1 and case 2 may be applied; Scarps may be linearly interpolated for the member thickness h <sub>min,2</sub> < h < h <sub>min,1</sub> (Case 2); γh <sub>nsp</sub> = 1,0) Standard thickness of concrete h <sub>min,1</sub> ≥ [mm] 100 120 140 160 200 250 Standard thickness of concrete h <sub>min,1</sub> ≥ [mm] 100 120 140 160 200 250 Standard thickness of concrete C20/25 $N^0_{Rk,sp}$ [kN] 9 12 20 30 40 $^{-1}$ Characteristic resistance in uncracked concrete C20/25 $N^0_{Rk,sp}$ [kN] 12 16 25 35 50,5 70,6 Case 2 Characteristic resistance in uncracked concrete C20/25 $N^0_{Rk,sp}$ [kN] 12 16 25 35 50,5 70,6 Cage distance $C_{Cr,sp}$ [mm] 115 125 140 200 220 250 Splitting for minimum thickness of concrete member Minimum thickness of concrete $N^0_{Rk,sp}$ [kN] 12 16 25 35 $N^0_{Rk,sp}$ [kN] 12 16 25 $N^0_{Rk,sp}$ [kN                                                                                                                                                                                                                                                        | Characteristic resistance in uncracked concrete C20/25                                                          | $N_{Rk,p}$           | [kN]        | 7,5 | 9   | 18                               | 26,7 | _1)        | _1)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Splitting                                                                                                       |                      |             |     |     |                                  |      |            |         |
| $ \begin{array}{c} \text{Rer,sp} \ \text{may} \ \text{be linearly interpolated for the member thickness} \ h_{\text{min},1} \geq     \text{fmm}   \ 100 \ 120 \ 140 \ 160 \ 200 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ 250 \ $                                                                                                                                                                                                                                                                    | Standard anchorage depth                                                                                        |                      |             |     |     |                                  |      |            |         |
| Standard thickness of concrete $h_{min,1} \ge [mm]$ 100 120 140 160 200 250 Case 1 Characteristic resistance in uncracked concrete C20/25 $productor(C20) = productor(C20) = pro$                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                      |             |     |     |                                  |      | 2 may be a | pplied; |
| Case 1         Characteristic resistance in uncracked concrete C20/25         N <sup>0</sup> <sub>Rk,sp</sub> [kN]         9         12         20         30         40         -¹¹           Edge distance         c <sub>Cr,sp</sub> [mm]         1,5 h <sub>ef</sub> -¹¹           Characteristic resistance in uncracked concrete C20/25         N <sup>0</sup> <sub>Rk,sp</sub> [kN]         12         16         25         35         50,5         70,6           Edge distance         C <sub>Cr,sp</sub> [mm]         115         125         140         200         220         250           Solitting for minimum thickness of concrete member         Minimum thickness of concrete member         Minimum thickness of concrete member         Minimum thickness of concrete concrete C20/25         N <sup>0</sup> <sub>Rk,sp</sub> [kN]         12         16         25         35         -¹¹         -¹¹           Characteristic resistance in uncracked concrete C20/25         N <sup>0</sup> <sub>Rk,sp</sub> [kN]         12         16         25         35         -¹¹         -¹¹           Reduced anchorage depth         Minimum thickness of concrete         h <sub>min,3</sub> ≥ [mm]         80         80         100         140         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                      |             |     |     |                                  | T    | T          | 1       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Standard thickness of concrete                                                                                  | h <sub>min,1</sub> ≥ | [mm]        | 100 | 120 | 140                              | 160  | 200        | 250     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Case 1                                                                                                          |                      |             |     |     |                                  |      |            |         |
| Case 2 Characteristic resistance in uncracked concrete C20/25 $ N^0_{Rk,sp} $ [kN] 12 16 25 35 50,5 70,6 Edge distance $ C_{cr,sp} $ [mm] 115 125 140 200 220 250 Splitting for minimum thickness of concrete member  Minimum thickness of concrete $ C_{cr,sp} $ [mm] 80 100 120 140 Characteristic resistance in uncracked concrete C20/25 $ C_{cr,sp} $ [kN] 12 16 25 35 $ C_{cr,sp} $ [kN] Minimum thickness of concrete $ C_{cr,sp} $ [mm] $ C_{cr,sp} $ [kN] 7,5 9 17,9 26,5 $ C_{cr,sp} $ [mm] 100 100 125 150 $ C_{cr,sp} $ [mm] 100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uncracked concrete C20/25                                                                                       | $N^0$ Rk,sp          | [kN]        | 9   | 12  | 20                               | 30   | 40         |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Edge distance                                                                                                   | C <sub>cr,sp</sub>   | [mm]        |     |     | 1,5 h <sub>ef</sub>              |      |            | _1)     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Case 2                                                                                                          |                      |             |     |     |                                  |      |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Characteristic resistance in uncracked concrete C20/25                                                          | $N^0_{Rk,sp}$        | [kN]        | 12  | 16  | 25                               | 35   | 50,5       | 70,6    |
| Minimum thickness of concrete $h_{min,2} \ge [mm]$ 80 100 120 140 Characteristic resistance in uncracked concrete C20/25 $N^0_{Rk,sp}$ [kN] 12 16 25 35 $N^0_{Rk,sp}$ [kN] 12 16 25 35 $N^0_{Rk,sp}$ [kN] 12 16 25 35 $N^0_{Rk,sp}$ [kN] $N^0_{Rk$                                                                                                                                                                                                                                                                                                      | Edge distance                                                                                                   | $C_{\text{cr,sp}}$   | [mm]        | 115 | 125 | 140                              | 200  | 220        | 250     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Splitting for minimum thickness of                                                                              | concrete me          | <u>mber</u> |     |     |                                  |      |            |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum thickness of concrete                                                                                   | h <sub>min,2</sub> ≥ | [mm]        | 80  | 100 | 120                              | 140  |            |         |
| Reduced anchorage depth         Minimum thickness of concrete $h_{min,3} ≥ [mm]$ 80       80       100       140         Characteristic resistance in uncracked concrete C20/25 $N^0_{Rk,sp}$ [kN]       7,5       9       17,9       26,5       _1)         Edge distance $C_{cr,sp}$ [mm]       100       100       125       150         Increasing factor $N_{Rk,p} = ψ_c · N_{Rk,p} (C20/25)$ $ψ_c$ [-] $(\frac{f_{ck}}{20})^{0,5}$ $N^0_{Rk,sp} = ψ_c · N^0_{Rk,sp} (C20/25)$ $V^0_{Rk,sp} = V^0_{Rk,sp} (C20/25)$ $V^0_{Rk,sp} = V^0_{Rk,sp} (C20/25)$ Concrete cone failure $V^0_{Rk,sp} = V^0_{Rk,sp} (C20/25)$ $V^0_{Rk,sp} = V^0_{Rk,sp} (C20/25)$ $V^0_{Rk,sp} = V^0_{Rk,sp} (C20/25)$ Reduced anchorage depth $V^0_{Rk,sp} = V^0_{Rk,sp} (C20/25)$ $V^0_{Rk,sp} = V^0_{Rk,sp} (C20/25)$ $V^0_{Rk,sp} = V^0_{Rk,sp} (C20/25)$ $V^0_{Rk,sp} = V^0_{Rk,sp} (C20/25)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Characteristic resistance in uncracked concrete C20/25                                                          | $N^0_{Rk,sp}$        | [kN]        | 12  | 16  | 25                               | 35   | _1)        | _1)     |
| Minimum thickness of concrete $h_{min,3} \ge [mm]$ 80 80 100 140 Characteristic resistance in uncracked concrete C20/25 $N^0_{Rk,sp}$ [kN] 7,5 9 17,9 26,5 $N^0_{Rk,sp}$ [kN] 7,5 9 17,9 26,5 $N^0_{Rk,sp}$ Edge distance $N^0_{Rk,sp}$ [mm] 100 100 125 150 $N^0_{Rk,sp} = \psi_c \cdot N_{Rk,p}$ (C20/25) $V^0_{Rk,sp} = \psi_c \cdot N^0_{Rk,sp}$ | Edge distance                                                                                                   | C <sub>cr,sp</sub>   | [mm]        |     | 2,5 | 5h <sub>ef</sub>                 |      |            |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reduced anchorage depth                                                                                         |                      |             |     |     |                                  |      |            |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum thickness of concrete                                                                                   | h <sub>min,3</sub> ≥ | [mm]        | 80  | 80  | 100                              | 140  |            |         |
| Edge distance $c_{cr,sp}$ [mm] 100 100 125 150 $c_{cr,sp}$ $c_$                                                                                                                                                                                                                                                                                                       | Characteristic resistance in uncracked concrete C20/25                                                          | $N^0_{Rk,sp}$        | [kN]        | 7,5 | 9   | 17,9                             | 26,5 | _1)        | _1)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Edge distance                                                                                                   | C <sub>cr,sp</sub>   | [mm]        | 100 | 100 | 125                              | 150  |            |         |
| Concrete cone failure           Effective anchorage depth         hef [mm]         46         60         70         85         100         125           Reduced anchorage depth         hef,red [mm]         35²)         40         50         65         -¹)         -¹)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Increasing factor $N_{Rk,p} = \psi_c \cdot N_{Rk,p} (C20/25)$ $N^0_{Rk,sp} = \psi_c \cdot N^0_{Rk,sp} (C20/25)$ | ψс                   | [-]         |     |     | $\left(\frac{f_{ck}}{20}\right)$ | 0,5  |            |         |
| Reduced anchorage depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Concrete cone failure                                                                                           |                      |             |     |     |                                  |      |            |         |
| Reduced anchorage depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Effective anchorage depth                                                                                       | h <sub>ef</sub>      | [mm]        | 46  | 60  | 70                               | 85   | 100        | 125     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reduced anchorage depth                                                                                         |                      |             |     |     |                                  |      |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                      |             |     | 1   |                                  |      | 1          | 1       |

<sup>1)</sup> No performance asessed.

### Clawbolt Pro EAW und EIW

### **Performance**

Characteristic values for **tension loads**, Clawbolt Pro EAW16 and EAWHR **(A4 / HCR)**, **uncracked concrete**, static and quasi-static action

Annex C4

<sup>&</sup>lt;sup>2)</sup> Restricted to the use of structural components with hef < 40mm which are statically indeterminate and subject to internal



Table C5: Characteristic values for shear loads, Clawbolt Pro EAW, cracked and uncracked concrete, static or quasi static action

| Fastener size                                     |                            |                       |         | M8                      | M10  | M12 | M16 | M20  | M24   | M27    |
|---------------------------------------------------|----------------------------|-----------------------|---------|-------------------------|------|-----|-----|------|-------|--------|
| Installation factor                               |                            | γinst                 | [-]     |                         |      |     | 1,0 |      |       |        |
| Steel failure witho                               | ut lever arm, Stee         | el zinc p             | olated  |                         |      |     |     |      |       |        |
| Characteristic resis                              | tance                      | $V^0$ Rk,s            | [kN]    | 12,2                    | 20,1 | 30  | 55  | 69   | 114   | 169,4  |
| Ductility factor                                  |                            | <b>k</b> <sub>7</sub> | [-]     |                         |      |     | 1,0 |      |       |        |
| Partial factor γ                                  |                            | γMs                   | [-]     |                         | 1,   | 25  |     | 1,33 | 1,25  | 1,25   |
| Steel failure witho                               | teel A4                    | , HCR                 |         |                         |      |     |     |      |       |        |
| Characteristic resis                              | tance                      | $V^0_{Rk,s}$          | [kN]    | 13                      | 20   | 30  | 55  | 86   | 123,6 |        |
| Ductility factor                                  |                            |                       | [-]     |                         |      |     |     |      | 1,0   | _1)    |
| Partial factor                                    |                            |                       | [-]     |                         | 1,   | 25  |     | 1,4  | 1,25  |        |
| Steel failure with I                              | ed                         |                       |         |                         |      |     |     |      |       |        |
| Characteristic bending resistance                 |                            | $M^0$ Rk,s            | [Nm]    | 23                      | 47   | 82  | 216 | 363  | 898   | 1331,5 |
| Partial factor                                    |                            | γMs                   | [-]     |                         | 1,   | 25  |     | 1,33 | 1,25  | 1,25   |
| Steel failure with I                              | ever arm, Stainles         | ss stee               | I A4, H | CR                      |      |     |     |      |       |        |
| Characteristic bend                               | ling resistance            | $M^0$ Rk,s            | [Nm]    | 26                      | 52   | 92  | 200 | 454  | 785,4 | _1)    |
| Partial factor                                    |                            | γMs                   | [-]     | 1,25                    |      |     |     | 1,4  | 1,25  | /      |
| Concrete pry-out                                  | failure                    |                       |         |                         |      |     |     |      |       |        |
| Pry-out factor                                    |                            | <b>k</b> 8            | [-]     |                         | 2    | ,4  |     |      | 2,8   |        |
| Concrete edge fai                                 | lure                       |                       |         |                         |      |     |     |      |       |        |
| Effective length of                               | Steel zinc plated          | If                    | [mm]    | 46                      | 60   | 70  | 85  | 100  | 115   | 125    |
| fastener in shear<br>loading with <b>h</b> ef     | Stainless steel<br>A4, HCR | lf                    | [mm]    | 46                      | 60   | 70  | 85  | 100  | 125   | _1)    |
| Effective length of                               | Steel zinc plated          | $I_{f,red}$           | [mm]    | <b>35</b> <sup>2)</sup> | 40   | 50  | 65  |      |       |        |
| fastener in shear<br>loading with <b>h</b> ef,red | Stainless steel<br>A4, HCR | $I_{f,red}$           | [mm]    | 35 <sup>2)</sup>        | 40   | 50  | 65  | _1)  | _1)   | _1)    |
| Outside diameter o                                | f fastener                 | $d_{nom}$             | [mm]    | 8                       | 10   | 12  | 16  | 20   | 24    | 27     |

<sup>&</sup>lt;sup>1)</sup> No performance assessed.

# Clawbolt Pro EAW und EIW Performance Characteristic values for shear loads, Clawbolt Pro EAW, cracked and uncracked concrete, static or quasi static action

<sup>&</sup>lt;sup>2)</sup> Restricted to the use of structural components with h<sub>ef</sub> < 40mm which are statically indeterminate and subject to internal exposure conditions only.



Table C6: Characteristic resistance for seismic loading, Clawbolt Pro EAW, standard anchorage depth, performance category C1 and C2

| Fastener s                                               | ize                                      |            |        | M8      | M10 | M12  | M16  | M20  |
|----------------------------------------------------------|------------------------------------------|------------|--------|---------|-----|------|------|------|
| Tension lo                                               | ads                                      |            |        |         |     |      |      |      |
| Installation                                             | factor                                   | γinst      | [-]    |         |     | 1,0  |      |      |
| Steel failur                                             | re, Steel zinc plated                    |            |        |         |     |      |      |      |
| Characteris                                              | stic resistance C1 N <sub>R</sub>        | k,s,eq,C1  | [kN]   | 16      | 27  | 40   | 60   | 86   |
| Characteris                                              | stic resistance <b>C2</b> N <sub>R</sub> | k,s,eq,C2  | [kN]   | 16      | 27  | 40   | 60   | 86   |
| Partial facto                                            | or                                       | γMs        | [-]    | 1,      | 53  | 1    | ,5   | 1,6  |
| Steel failur                                             | re, Stainless steel A4, I                | HCR        |        |         |     |      |      |      |
| Characteris                                              | stic resistance C1 N <sub>R</sub>        | k,s,eq,C1  | [kN]   | 16      | 27  | 40   | 64   | 108  |
| Characteris                                              | stic resistance <b>C2</b> N <sub>R</sub> | k,s,eq,C2  | [kN]   | 16      | 27  | 40   | 64   | 108  |
| Partial factor γ <sub>Ms</sub>                           |                                          |            | [-]    |         | 1   | ,5   |      | 1,68 |
| Pull-out (steel zinc plated, stainless steel A4 and HCR) |                                          |            |        |         |     |      |      |      |
| Characteris                                              | stic resistance C1 N <sub>R</sub>        | k,p,eq,C1  | [kN]   | 5       | 9   | 16   | 25   | 36   |
| Characteris                                              | stic resistance <b>C2</b> N <sub>R</sub> | k,p,eq,C2  | [kN]   | 2,3     | 3,6 | 10,2 | 13,8 | 24,4 |
| Shear load                                               | ls                                       |            |        |         |     |      |      |      |
| Steel failur                                             | re without lever arm, S                  | teel zin   | c plat | ed      |     |      |      |      |
| Characteris                                              | stic resistance C1 V <sub>F</sub>        | Rk,s,eq,C1 | [kN]   | 9,3     | 20  | 27   | 44   | 69   |
| Characteris                                              | stic resistance <b>C2</b> V <sub>F</sub> | Rk,s,eq,C2 | [kN]   | 6,7     | 14  | 16,2 | 35,7 | 55,2 |
| Partial facto                                            | or                                       | γMs        | [-]    |         | 1,  | 25   |      | 1,33 |
| Steel failur                                             | re without lever arm, S                  | tainles    | s stee | A4, HCR |     |      |      |      |
| Characteris                                              | stic resistance <b>C1</b> V <sub>F</sub> | Rk,s,eq,C1 | [kN]   | 9,3     | 20  | 27   | 44   | 69   |
| Characteris                                              | stic resistance <b>C2</b> V <sub>F</sub> | Rk,s,eq,C2 | [kN]   | 6,7     | 14  | 16,2 | 35,7 | 55,2 |
| Partial facto                                            | or                                       | γMs        | [-]    | 1,25    |     |      |      |      |
| Factor for annular gap                                   | αgap                                     | [-]        | 0,5    |         |     |      |      |      |
| gap                                                      | with<br>filling of annular gap           | αgap       | [-]    |         |     | 1,0  |      |      |

| Clawbolt F | Pro EAW | und | <b>EIW</b> |
|------------|---------|-----|------------|
|------------|---------|-----|------------|

### **Performance**

Characteristic resistance for **seismic loading**, Clawbolt Pro EAW, **standard anchorage depth**, performance category **C1** and **C2** 



Table C7: Characteristic values for tension and shear load under fire exposure, Clawbolt Pro EAW, standard anchorage depth, cracked and uncracked concrete C20/25 to C50/60

| Fastener size    |               |                        |        | M8  | M10 | M12  | M16  | M20  | M24   | M27  |
|------------------|---------------|------------------------|--------|-----|-----|------|------|------|-------|------|
| Tension load     |               |                        |        |     |     |      |      |      |       |      |
| Steel failure    |               |                        |        |     |     |      |      |      |       |      |
| Steel, zinc plat | ed            |                        |        |     |     |      |      |      |       |      |
|                  | R30           |                        |        | 1,5 | 2,6 | 4,1  | 7,7  | 9,4  | 13,6  | 17,6 |
| Characteristic   | R60           | N                      | [LVI]  | 1,1 | 1,9 | 3,0  | 5,6  | 8,2  | 11,8  | 15,3 |
| resistance       | R90           | $N_{Rk,s,fi}$          | [kN]   | 0,8 | 1,4 | 2,4  | 4,4  | 6,9  | 10,0  | 13,0 |
|                  | R120          |                        |        | 0,7 | 1,2 | 2,2  | 4,0  | 6,3  | 9,1   | 11,8 |
| Stainless steel  | A4, HCR       |                        |        |     |     |      |      |      |       |      |
|                  | R30           |                        |        | 3,8 | 6,9 | 12,7 | 23,7 | 33,5 | 48,2  |      |
| Characteristic   | R60           | N <sub>Rk,s,fi</sub>   | וואשו  | 2,9 | 5,3 | 9,4  | 17,6 | 25,0 | 35,9  | _1)  |
| resistance       | R90           | INKk,s,fi              | [kN]   | 2,0 | 3,6 | 6,1  | 11,5 | 16,4 | 23,6  | ,    |
|                  | R120          |                        |        | 1,6 | 2,8 | 4,5  | 8,4  | 12,1 | 17,4  |      |
| Shear load       |               |                        |        |     |     |      |      |      |       |      |
| Steel failure wi | thout lever a | arm                    |        |     |     |      |      |      |       |      |
| Steel, zinc plat | ed            |                        |        |     |     |      |      |      |       |      |
|                  | R30           |                        |        | 1,6 | 2,6 | 4,1  | 7,7  | 11   | 16    | 20,6 |
| Characteristic   | R60           | V <sub>Rk,s,fi</sub>   | [LAI]  | 1,5 | 2,5 | 3,6  | 6,8  | 11   | 15    | 19,8 |
| resistance       | R90           | <b>V</b> Rk,s,fi       | [kN]   | 1,2 | 2,1 | 3,5  | 6,5  | 10   | 15    | 19,0 |
|                  | R120          |                        |        | 1,0 | 2,0 | 3,4  | 6,4  | 10   | 14    | 18,6 |
| Stainless steel  | A4, HCR       |                        |        |     |     |      |      |      |       |      |
|                  | R30           |                        |        | 3,8 | 6,9 | 12,7 | 23,7 | 33,5 | 48,2  |      |
| Characteristic   | R60           | \/                     | [LVI]  | 2,9 | 5,3 | 9,4  | 17,6 | 25,0 | 35,9  | _1)  |
| resistance       | R90           | $V_{Rk,s,fi}$          | [kN]   | 2,0 | 3,6 | 6,1  | 11,5 | 16,4 | 23,6  | /    |
|                  | R120          |                        |        | 1,6 | 2,8 | 4,5  | 8,4  | 12,1 | 17,4  |      |
| Steel failure wi | th lever arm  | l                      |        |     |     |      |      |      |       |      |
| Steel, zinc plat | ed            |                        |        |     |     |      |      |      |       |      |
|                  | R30           |                        |        | 1,7 | 3,3 | 6,4  | 16,3 | 29   | 50    | 75   |
| Characteristic   | R60           | N.40                   | [NIma] | 1,6 | 3,2 | 5,6  | 14   | 28   | 48    | 72   |
| resistance       | R90           | M <sup>0</sup> Rk,s,fi | [Nm]   | 1,2 | 2,7 | 5,4  | 14   | 27   | 47    | 69   |
|                  | R120          |                        |        | 1,1 | 2,5 | 5,3  | 13   | 26   | 46    | 68   |
| Stainless steel  | A4, HCR       |                        |        |     |     |      |      |      |       |      |
|                  | R30           |                        |        | 3,8 | 9,0 | 19,7 | 50,1 | 88,8 | 153,5 | T    |
| Characteristic   | R60           | M <sup>0</sup> Rk,s,fi |        | 2,9 | 6,8 | 14,6 | 37,2 | 66,1 | 114,3 | _1)  |
| resistance       | R90           | IVI KK,S,fi            | [Nm]   | 2,1 | 4,7 | 9,5  | 24,2 | 43,4 | 75,1  |      |
|                  | R120          |                        |        | 1,6 | 3,6 | 7,0  | 17,8 | 32,1 | 55,5  |      |

<sup>1)</sup> No performance assessed

### Clawbolt Pro EAW und EIW

### **Performance**

Characteristic values for tension and shear load under fire exposure, Clawbolt Pro EAW, standard anchorage depth, cracked and uncracked concrete C20/25 to C50/60



Table C8: Characteristic values for tension and shear load under fire exposure,

Clawbolt Pro EAW, reduced anchorage depth, cracked and uncracked concrete

C20/25 to C50/60

| Fastener size       |               |                                     |         | M8  | M10 | M12  | M16  |
|---------------------|---------------|-------------------------------------|---------|-----|-----|------|------|
| Tension load        |               |                                     |         |     |     |      |      |
| Steel failure       |               |                                     |         |     |     |      |      |
| Steel, zinc plated  |               |                                     |         |     |     |      |      |
|                     | R30           |                                     |         | 1,5 | 2,6 | 4,1  | 7,7  |
| Characteristic      | R60           | . N                                 | [LNI]   | 1,1 | 1,9 | 3,0  | 5,6  |
| resistance          | R90           | $ N_{Rk,s,fi}$                      | [kN]    | 0,8 | 1,3 | 1,9  | 3,5  |
|                     | R120          |                                     |         | 0,6 | 1,0 | 1,3  | 2,5  |
| Stainless steel A4  | , HCR         |                                     |         |     |     |      |      |
|                     | R30           |                                     |         | 3,2 | 6,9 | 12,7 | 23,7 |
| Characteristic      | R60           | -<br>N1                             | FI-N17  | 2,5 | 5,3 | 9,4  | 17,6 |
| resistance          | R90           | - N <sub>Rk,s,fi</sub>              | [kN]    | 1,9 | 3,6 | 6,1  | 11,5 |
|                     | R120          | -                                   |         | 1,6 | 2,8 | 4,5  | 8,4  |
| Shear load          |               |                                     |         |     |     |      |      |
| Steel failure witho | out lever arm |                                     |         |     |     |      |      |
| Steel, zinc plated  |               |                                     |         |     |     |      |      |
| Characteristic      | R30           |                                     | FLANT   | 1,5 | 2,6 | 4,1  | 7,7  |
|                     | R60           |                                     |         | 1,1 | 1,9 | 3,0  | 5,6  |
| resistance          | R90           | $ V_{Rk,s,fi}$                      | [kN]    | 0,8 | 1,3 | 1,9  | 3,5  |
|                     | R120          | -                                   |         | 0,6 | 1,0 | 1,3  | 2,5  |
| Stainless steel A4  | , HCR         |                                     |         |     |     |      |      |
|                     | R30           |                                     |         | 3,2 | 6,9 | 12,7 | 23,7 |
| Characteristic      | R60           |                                     | FI-NIT  | 2,5 | 5,3 | 9,4  | 17,6 |
| resistance          | R90           | $V_{Rk,s,fi}$                       | [kN]    | 1,9 | 3,6 | 6,1  | 11,5 |
|                     | R120          | -                                   |         | 1,6 | 2,8 | 4,5  | 8,4  |
| Steel failure with  | lever arm     |                                     |         |     |     |      |      |
| Steel, zinc plated  |               |                                     |         |     |     |      |      |
|                     | R30           |                                     |         | 1,5 | 3,3 | 6,4  | 16,3 |
| Characteristic      | R60           | -<br>n a0                           | D. L J  | 1,2 | 2,5 | 4,7  | 11,9 |
| resistance          | R90           | - M <sup>0</sup> <sub>Rk,s,fi</sub> | [Nm]    | 0,8 | 1,7 | 3,0  | 7,5  |
|                     | R120          | -                                   |         | 0,6 | 1,2 | 2,1  | 5,3  |
| Stainless steel A4  | , HCR         |                                     |         |     |     |      |      |
|                     | R30           |                                     |         | 3,2 | 8,9 | 19,7 | 50,1 |
| Characteristic      | R60           | -<br>N # O                          | <u></u> | 2,6 | 6,8 | 14,6 | 37,2 |
| resistance          | R90           | $ M^0$ <sub>Rk,s,fi</sub>           | [Nm]    | 2,0 | 4,7 | 9,5  | 24,2 |
|                     | R120          | -                                   |         | 1,6 | 3,6 | 7,0  | 17,8 |

### Clawbolt Pro EAW und EIW

### **Performance**

Characteristic values for tension and shear load under fire exposure, Clawbolt Pro EAW, reduced anchorage depth, cracked and uncracked concrete C20/25 to C50/60



Table C9: Displacements under tension load, Clawbolt Pro EAW

| Fastener size                         |                              |      | M8  | M10  | M12  | M16  | M20  | M24  | M27 |
|---------------------------------------|------------------------------|------|-----|------|------|------|------|------|-----|
| Standard anchorage depth              |                              |      |     |      |      |      |      |      |     |
| Steel zinc plated                     |                              |      |     |      |      |      |      |      |     |
| Tension load in cracked concrete      | N                            | [kN] | 2,4 | 4,3  | 7,6  | 11,9 | 17,1 | 21,1 | 24  |
| Displacement                          | δηο                          | [mm] | 0,6 | 1,0  | 0,4  | 1,0  | 0,9  | 0,7  | 0,9 |
| Displacement                          | $\delta_{N\infty}$           | [mm] | 1,4 | 1,2  | 1,4  | 1,3  | 1,0  | 1,2  | 1,4 |
| Tension load in uncracked concrete    | N                            | [kN] | 5,7 | 7,6  | 11,9 | 16,7 | 23,8 | 29,6 | 34  |
| Displacement                          | δηο                          | [mm] | 0,4 | 0,5  | 0,7  | 0,3  | 0,4  | 0,5  | 0,3 |
| Displacement                          | $\delta_{N\infty}$           | [mm] | 0,  | 8    | 1,4  |      | 0,8  |      | 1,4 |
| Displacements under seismic tension   | loads <b>C2</b>              |      |     |      |      |      |      |      |     |
| Displacements for DLS                 | $\delta_{\text{N,eq,(DLS)}}$ | [mm] | 2,3 | 4,1  | 4,9  | 3,6  | 5,1  | _1)  | _1) |
| Displacements for ULS                 | $\delta_{\text{N,eq(ULS)}}$  | [mm] | 8,2 | 13,8 | 15,7 | 9,5  | 15,2 | ' /  | ',  |
| Stainless steel A4, HCR               |                              |      |     |      |      |      |      |      |     |
| Tension load in cracked concrete      | N                            | [kN] | 2,4 | 4,3  | 7,6  | 11,9 | 17,1 | 19,0 |     |
|                                       | δηο                          | [mm] | 0,7 | 1,8  | 0,4  | 0,7  | 0,9  | 0,5  | _1) |
| Displacement                          | <br>δ <sub>N∞</sub>          | [mm] | 1,2 | 1,4  | 1,4  | 1,4  | 1,0  | 1,8  |     |
| Tension load in uncracked concrete    | N                            | [kN] | 5,8 | 7,6  | 11,9 | 16,7 | 23,8 | 33,5 |     |
|                                       | δηο                          | [mm] | 0,6 | 0,5  | 0,7  | 0,2  | 0,4  | 0,5  | _1) |
| Displacement                          | <br>δ <sub>N∞</sub>          | [mm] | 1,2 | 1,0  | 1,4  | 0,4  | 0,8  | 1,1  |     |
| Displacements under seismic tension   | loads C2                     |      |     |      |      |      |      |      |     |
| Displacements for DLS                 | $\delta_{\text{N,eq(DLS)}}$  | [mm] | 2,3 | 4,1  | 4,9  | 3,6  | 5,1  | _1)  | _1) |
| Displacements for ULS                 | $\delta$ N,eq(ULS)           | [mm] | 8,2 | 13,8 | 15,7 | 9,5  | 15,2 | _''  | _'' |
| Reduced anchorage depth               |                              |      |     |      |      |      |      |      |     |
| Steel zinc plated, stainless steel A4 | , HCR                        |      |     |      |      |      |      |      |     |
| Tension load in cracked concrete      | N                            | [kN] | 2,4 | 3,6  | 6,1  | 9,0  |      |      |     |
| 5: 1                                  | δηο                          | [mm] | 0,8 | 0,7  | 0,5  | 1,0  | _1)  | _1)  | _1) |
| Displacement $\delta_{N\infty}$       |                              | [mm] | 1,2 | 1,0  | 0,8  | 1,1  | ]    |      |     |
| Tension load in uncracked concrete N  |                              | [kN] | 3,7 | 4,3  | 8,5  | 12,6 |      |      |     |
|                                       | δηο                          | [mm] | 0,1 | 0,2  | 0,2  | 0,2  | _1)  | _1)  | _1) |
| Displacement                          | <br>δ <sub>N∞</sub>          | [mm] | 0,7 | 0,7  | 0,7  | 0,7  |      |      |     |

<sup>&</sup>lt;sup>1)</sup> No performance assessed

# Clawbolt Pro EAW und EIW Performance Displacements under tension load, Clawbolt Pro EAW Annex C9



### Table C10: Displacements under shear load, Clawbolt Pro EAW

| Fastener size                                |                             |                | M8  | M10  | M12  | M16  | M20  | M24        | M27        |
|----------------------------------------------|-----------------------------|----------------|-----|------|------|------|------|------------|------------|
| Standard anchorage dept                      | th                          |                |     |      |      |      |      |            |            |
| Steel zinc plated                            |                             |                |     |      |      |      |      |            |            |
| Shear load in cracked and uncracked concrete | V                           | [kN]           | 6,9 | 11,4 | 17,1 | 31,4 | 36,8 | 64,9       | 96,8       |
| Displacement                                 | δνο                         | [mm]           | 2,0 | 3,2  | 3,6  | 3,5  | 1,8  | 3,5        | 3,6        |
| Displacement                                 | $\delta_{V\infty}$          | [mm]           | 3,0 | 4,7  | 5,5  | 5,3  | 2,7  | 5,3        | 5,4        |
| Displacements under seisn                    | nic shear l                 | oads C2        |     |      |      |      |      |            |            |
| Displacements for DLS                        | $\delta_{\text{V,eq(DLS)}}$ | [mm]           | 3,0 | 2,7  | 3,5  | 4,3  | 4,7  | _1)        | _1)        |
| Displacements<br>for ULS                     | $\delta_{\text{V,eq(ULS)}}$ | [mm]           | 5,9 | 5,3  | 9,5  | 9,6  | 10,1 | <b>-</b> / | <b>-</b> / |
| Stainless steel A4, HCR                      |                             |                |     |      |      |      |      |            |            |
| Shear load in cracked and uncracked concrete | >                           | [kN]           | 7,3 | 11,4 | 17,1 | 31,4 | 43,8 | 70,6       |            |
| Diaplacement                                 | δνο                         | [mm]           | 1,9 | 2,4  | 4,0  | 4,3  | 2,9  | 2,8        | _1)        |
| Displacement                                 | $\delta_{\text{V}\infty}$   | [mm]           | 2,9 | 3,6  | 5,9  | 6,4  | 4,3  | 4,2        |            |
| Displacements under seisn                    | nic shear l                 | oads <b>C2</b> |     |      |      |      |      |            |            |
| Displacements for DLS                        | $\delta_{\text{V,eq(DLS)}}$ | [mm]           | 3,0 | 2,7  | 3,5  | 4,3  | 4,7  | _1)        | _1)        |
| Displacements for ULS                        | $\delta_{\text{V,eq(ULS)}}$ | [mm]           | 5,9 | 5,3  | 9,5  | 9,6  | 10,1 | _ ,        | _*,        |
| Reduced anchorage dept                       | h                           |                |     |      |      |      |      |            |            |
| Steel zinc plated                            |                             |                |     |      |      |      |      |            |            |
| Shear load in cracked and uncracked concrete | V                           | [kN]           | 6,9 | 11,4 | 17,1 | 31,4 |      |            |            |
| Displacement                                 | δνο                         | [mm]           | 2,0 | 3,2  | 3,6  | 3,5  | _1)  | _1)        | _1)        |
| Displacement                                 | δν∞                         | [mm]           | 3,0 | 4,7  | 5,5  | 5,3  |      |            |            |
| Stainless steel A4, HCR                      |                             |                |     |      |      |      |      |            |            |
| Shear load in cracked and uncracked concrete | V                           | [kN]           | 7,3 | 11,4 | 17,1 | 31,4 |      |            |            |
| Displacement                                 | δνο                         | [mm]           | 1,9 | 2,4  | 4,0  | 4,3  | _1)  | _1)        | _1)        |
| isplacement                                  | δν∞                         | [mm]           | 2,9 | 3,6  | 5,9  | 6,4  |      |            |            |

<sup>1)</sup> No performance assessed

| Clawbolt Pro EAW und EIW                                     |           |
|--------------------------------------------------------------|-----------|
| Performance Displacements under shear load, Clawbolt Pro EAW | Annex C10 |



Table C11: Characteristic values for tension loads, Clawbolt Pro EIW, cracked concrete, static and quasi-static action

| Fastener size                                                     |                                    |      | M6                                              | M8   | M10  | M12  |  |
|-------------------------------------------------------------------|------------------------------------|------|-------------------------------------------------|------|------|------|--|
| Installation factor                                               | γinst                              | [-]  | 1,2                                             |      |      |      |  |
| Steel failure                                                     |                                    |      |                                                 |      |      |      |  |
| Characteristic resistance, steel zinc plated                      | N <sub>Rk,s</sub>                  | [kN] | 16,1                                            | 22,6 | 26,0 | 56,6 |  |
| Partial factor                                                    | γMs                                | [-]  |                                                 | 1    | ,5   |      |  |
| Characteristic resistance, stainless steel A4, HCR                | $N_{Rk,s}$                         | [kN] | 14,1                                            | 25,6 | 35,8 | 59,0 |  |
|                                                                   | γMs                                | [-]  | 1,87                                            |      |      |      |  |
| Pull-out failure                                                  |                                    |      |                                                 |      |      |      |  |
| Characteristic resistance in cracked concrete C20/25              | <b>N</b> Rk,p                      | [kN] | 5                                               | 9    | 12   | 20   |  |
| Increasing factor for $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25) | ψс                                 | [-]  | $\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0.5}$ |      |      |      |  |
| Concrete cone failure                                             |                                    |      |                                                 |      |      |      |  |
| Effective anchorage depth                                         | h <sub>ef</sub>                    | [mm] | 45                                              | 58   | 65   | 80   |  |
| Factor for cracked concrete                                       | $\mathbf{k}_1 = \mathbf{k}_{cr,N}$ | [-]  |                                                 | 7    | ,7   |      |  |

Clawbolt Pro EAW und EIW

**Performance** 

Characteristic values for tension loads, Clawbolt Pro EIW, cracked concrete, static and quasi-static action



Table C12: Characteristic values for tension loads, Clawbolt Pro EIW, uncracked concrete, static and quasi-static action

| Fastener size                                                                                                                                        |                   |      | M6                                     | M8   | M10  | M12  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|----------------------------------------|------|------|------|--|--|
| Installation factor                                                                                                                                  | γinst             | [-]  | 1,2                                    |      |      |      |  |  |
| Steel failure                                                                                                                                        |                   |      |                                        |      |      |      |  |  |
| Characteristic resistance, steel zinc plated                                                                                                         | $N_{Rk,s}$        | [kN] | 16,1                                   | 22,6 | 26,0 | 56,6 |  |  |
| Partial factor                                                                                                                                       | γMs               | [-]  |                                        | 1    | ,5   |      |  |  |
| Characteristic resistance, stainless steel A4, HCR                                                                                                   | $N_{Rk,s}$        | [kN] | 14,1                                   | 25,6 | 35,8 | 59,0 |  |  |
| Partial factor                                                                                                                                       | γMs               | [-]  |                                        | 1,   | 87   |      |  |  |
| Pull-out                                                                                                                                             |                   |      |                                        |      |      |      |  |  |
| Characteristic resistance in uncracked concrete C20/25                                                                                               | $N_{Rk,p}$        | [kN] | 12                                     | 16   | 20   | 30   |  |  |
| Splitting (the higher resistance of Case 1 and Case 2 may be applied)                                                                                |                   |      |                                        |      |      |      |  |  |
| Minimum thickness of concrete member                                                                                                                 | h <sub>min</sub>  | [mm] | 100                                    | 120  | 130  | 160  |  |  |
| Case 1                                                                                                                                               | Case 1            |      |                                        |      |      |      |  |  |
| Characteristic resistance in uncracked concrete C20/25                                                                                               | $N^0_{Rk,sp}$     | [kN] | 9                                      | 12   | 16   | 25   |  |  |
| Edge distance                                                                                                                                        | <b>C</b> cr,sp    | [mm] | 1,5 h <sub>ef</sub>                    |      |      |      |  |  |
| Case 2                                                                                                                                               |                   |      |                                        |      |      |      |  |  |
| Characteristic resistance in uncracked concrete C20/25                                                                                               | $N^0_{Rk,sp}$     | [kN] | 12                                     | 16   | 20   | 30   |  |  |
| Edge distance                                                                                                                                        | <b>C</b> cr,sp    | [mm] | 2,5 h <sub>ef</sub>                    |      |      |      |  |  |
| Increasing factor for $\begin{split} N_{Rk,p} &= \psi_c \cdot N_{Rk,p} \ (C20/25) \\ N^0_{Rk,sp} &= \psi_c \cdot N^0_{Rk,sp} \ (C20/25) \end{split}$ | ψс                | [-]  | $\left(\frac{f_{ck}}{20}\right)^{0,5}$ |      |      |      |  |  |
| Concrete cone failure                                                                                                                                |                   |      |                                        |      |      |      |  |  |
| Effective anchorage depth                                                                                                                            | h <sub>ef</sub>   | [mm] | 45                                     | 58   | 65   | 80   |  |  |
| Factor for uncracked concrete                                                                                                                        | $k_1 = k_{ucr,N}$ | [-]  |                                        | 11   | 1,0  |      |  |  |

| Clawbolt Pro EAW und EIW                                                                                                  |           |
|---------------------------------------------------------------------------------------------------------------------------|-----------|
| Performance Characteristic values for tension loads, Clawbolt Pro EIW, uncracked concrete, static and quasi-static action | Annex C12 |



Table C13: Characteristic values for shear loads, Clawbolt Pro EIW, cracked and uncracked concrete, static and quasi-static action

| Fastener size                                                           |                           |          | M6   | M8   | M10  | M12   |  |
|-------------------------------------------------------------------------|---------------------------|----------|------|------|------|-------|--|
| Installation factor                                                     | γ <sub>inst</sub> [-] 1,0 |          |      |      |      |       |  |
| Clawbolt Pro ElWMS, steel zinc plated                                   | ı                         |          |      |      |      |       |  |
| Steel failure without lever arm, pre-se                                 | tting install             | ation    |      |      |      |       |  |
| Characteristic resistance                                               | $V^0_{Rk,s}$              | [kN]     | 5,8  | 6,9  | 10,4 | 25,8  |  |
| Steel failure without lever arm, throug                                 | h-setting ir              | stallati | on   |      |      |       |  |
| Characteristic resistance                                               | $V^0$ Rk,s                | [kN]     | 5,1  | 7,6  | 10,8 | 24,3  |  |
| Steel failure with lever arm, pre-settin                                | g installatio             | n        |      |      |      |       |  |
| Characteristic bending resistance                                       | M <sup>0</sup> Rk,s       | [Nm]     | 12,2 | 30,0 | 59,8 | 104,6 |  |
| Steel failure with lever arm, through-s                                 | etting insta              | llation  |      |      |      |       |  |
| Characteristic bending resistance                                       | M <sup>0</sup> Rk,s       | [Nm]     | 36,0 | 53,2 | 76,0 | 207   |  |
| Partial factor for V <sub>Rk,s</sub> and M <sup>0</sup> <sub>Rk,s</sub> | γMs                       | [-]      |      | 1,   | 25   |       |  |
| Ductility factor                                                        | <b>k</b> <sub>7</sub>     | [-]      | 1,0  |      |      |       |  |
| Clawbolt Pro ElW16 and ElWHR, stain                                     | less steel A              | 4, HCF   |      |      |      |       |  |
| Steel failure without lever arm, pre-se                                 | tting install             | ation    |      |      |      |       |  |
| Characteristic resistance                                               | $V^0$ Rk,s                | [kN]     | 5,7  | 9,2  | 10,6 | 23,6  |  |
| Partial factor                                                          | γMs                       | [-]      | 1,25 |      |      |       |  |
| Steel failure without lever arm, throug                                 | h-setting ir              | stallati | on   |      |      |       |  |
| Characteristic resistance                                               | $V^0$ Rk,s                | [kN]     | 7,3  | 7,6  | 9,7  | 29,6  |  |
| Partial factor                                                          | γMs                       | [-]      |      | 1,25 |      |       |  |
| Steel failure with lever arm, pre-settin                                | g installatio             | n        |      |      |      |       |  |
| Characteristic bending resistance                                       | $M^0$ Rk,s                | [Nm]     | 10,7 | 26,2 | 52,3 | 91,6  |  |
| Partial factor                                                          | γMs                       | [-]      |      | 1,   | 56   |       |  |
| Steel failure with lever arm, through-s                                 | etting insta              | llation  |      | _    | _    |       |  |
| Characteristic bending resistance                                       | $M^0$ Rk,s                | [Nm]     | 28,2 | 44,3 | 69,9 | 191,2 |  |
| Partial factor                                                          | γMs                       | [-]      |      | 1,   | .25  |       |  |
| Ductility factor                                                        | <b>k</b> <sub>7</sub>     | [-]      |      | 1    | ,0   |       |  |
| Concrete pry-out failure                                                |                           |          |      |      |      |       |  |
| Pry-out factor                                                          | <b>k</b> 8                | [-]      | 1,5  | 1,5  | 2,0  | 2,0   |  |
| Concrete edge failure                                                   |                           |          |      |      |      |       |  |
| Effective length of fastener in shear loading                           | I <sub>f</sub>            | [mm]     | 45   | 58   | 65   | 80    |  |
| Effective diameter of fastener                                          | $d_{nom}$                 | [mm]     | 8    | 10   | 12   | 16    |  |

### Clawbolt Pro EAW und EIW

### **Performance**

Characteristic values for shear loads, Clawbolt Pro EIW, cracked and uncracked concrete, static and quasi-static action



Table C14: Characteristic values for tension and shear load under fire exposure, Clawbolt Pro EIW, cracked and uncracked concrete C20/25 to C50/60

| Fastener size     |                |              | М6  | M8  | M10  | M12  |
|-------------------|----------------|--------------|-----|-----|------|------|
| Tension load      |                | ·            |     |     |      |      |
| Steel failure     |                |              |     |     |      |      |
| Steel zinc plated | d              |              |     |     |      |      |
|                   | R30            |              | 0,7 | 1,4 | 2,5  | 3,7  |
| Characteristic    | R60            | k,s,fi [kN]  | 0,6 | 1,2 | 2,0  | 2,9  |
| resistance        | R90            | K,S,fi [KIN] | 0,5 | 0,9 | 1,5  | 2,2  |
|                   | R120           |              | 0,4 | 0,8 | 1,3  | 1,8  |
| Stainless steel   | A4, HCR        |              |     |     |      |      |
|                   | R30            |              | 2,9 | 5,4 | 8,7  | 12,6 |
| Characteristic    | R60            | [ [LAN]      | 1,9 | 3,8 | 6,3  | 9,2  |
| resistance        | R90            | k,s,fi [kN]  | 1,0 | 2,1 | 3,9  | 5,7  |
|                   | R120           |              | 0,5 | 1,3 | 2,7  | 4,0  |
| Shear load        |                |              |     |     |      |      |
| Steel failure wit | hout lever arm |              |     |     |      |      |
| Steel zinc plated | d              |              |     |     |      |      |
|                   | R30            |              | 0,7 | 1,4 | 2,5  | 3,7  |
| Characteristic    | R60            |              | 0,6 | 1,2 | 2,0  | 2,9  |
| resistance        | R90            | k,s,fi [kN]  | 0,5 | 0,9 | 1,5  | 2,2  |
|                   | R120           |              | 0,4 | 0,8 | 1,3  | 1,8  |
| Stainless steel   | A4, HCR        |              |     |     |      |      |
|                   | R30            |              | 2,9 | 5,4 | 8,7  | 12,6 |
| Characteristic    | R60            | I FIGNIZ     | 1,9 | 3,8 | 6,3  | 9,2  |
| resistance        | R90            | k,s,fi [kN]  | 1,0 | 2,1 | 3,9  | 5,7  |
|                   | R120           |              | 0,5 | 1,3 | 2,7  | 4,0  |
| Steel failure wit | h lever arm    |              |     |     |      |      |
| Steel zinc plated | d              |              |     |     |      |      |
|                   | R30            |              | 0,5 | 1,4 | 3,3  | 5,7  |
| Characteristic    | R60            | [Nima]       | 0,4 | 1,2 | 2,6  | 4,6  |
| resistance        | R90            | Rk,s,fi [Nm] | 0,4 | 0,9 | 2,0  | 3,4  |
|                   | R120           |              | 0,3 | 0,8 | 1,6  | 2,8  |
| Stainless steel   | A4, HCR        |              |     |     |      |      |
|                   | R30            |              | 2,2 | 5,5 | 11,2 | 19,6 |
| Characteristic    | R60            | , [Nim1      | 1,5 | 3,9 | 8,1  | 14,3 |
| resistance        | R90            | Rk,s,fi Nm   | 0,7 | 2,2 | 5,1  | 8,9  |
|                   | R120           | I [          | 0,4 | 1,3 | 3,5  | 6,2  |

| Clawbolt Pro EAW und EIW | =IW | und | W | FΔ | Pro | lt | ho | law | C |
|--------------------------|-----|-----|---|----|-----|----|----|-----|---|
|--------------------------|-----|-----|---|----|-----|----|----|-----|---|

**Performance** 

Characteristic values for **tension** and **shear loads** under **fire exposure**, **Clawbolt Pro EIW**, cracked and uncracked concrete C20/25 to C50/60



### Table C15: Displacements under tension load, Clawbolt Pro EIW

| Fastener size                      |                 |      | M6  | M8  | M10 | M12  |
|------------------------------------|-----------------|------|-----|-----|-----|------|
| Tension load in cracked concrete   | N               | [kN] | 2,0 | 3,6 | 4,8 | 8,0  |
| Displacements                      | δηο             | [mm] | 0,6 | 0,6 | 0,8 | 1,0  |
|                                    | δn∞             | [mm] | 0,8 | 0,8 | 1,2 | 1,4  |
| Tension load in uncracked concrete | N               | [kN] | 4,8 | 6,4 | 8,0 | 12,0 |
| Displacements                      | δηο             | [mm] | 0,4 | 0,5 | 0,7 | 0,8  |
| Displacements                      | δ <sub>N∞</sub> | [mm] | 0,8 | 0,8 | 1,2 | 1,4  |

### Table C16: Displacements under shear load, Clawbolt Pro EIW

| Fastener size                                |                      |      | M6  | M8  | M10 | M12  |
|----------------------------------------------|----------------------|------|-----|-----|-----|------|
| Shear load in cracked and uncracked concrete | V                    | [kN] | 4,2 | 5,3 | 6,2 | 16,9 |
| Displacements                                | $\delta_{\text{V0}}$ | [mm] | 2,8 | 2,9 | 2,5 | 3,6  |
|                                              | δν∞                  | [mm] | 4,2 | 4,4 | 3,8 | 5,3  |

Clawbolt Pro EAW und EIW

Performance
Displacements under tension load and under shear load, Clawbolt Pro EIW

Annex C15