

H501 HYBRID

Complies with AS 5216 and NCC (National Construction Code)

H501 XCHEM® PRO HYBRID 300 420 ml

Description

A two-component chemical anchoring injection system. A formulation derived from vinylester resin, possessing very high bond strength and developed principally to anchor threaded studs into concrete. Used widely for high loads in both vertical and horizontal applications.

Applications	Highlights						
Cracked and non-cracked concrete	X						
 Natural stone* 	CRACKED	NON-CRACKED					
Solid and hollow masonry	O TO TO TE	HON GIGIGIALS					
Aerated concrete							
Calcium silicate							
Carolain Silicate	MASONRY						

Features

- Fast working times for early loading in timesensitive applications
- Styrene-free for indoors and in enclosed spaces
- Use in wet or flooded holes
- · High durability
- Chemical resistance
- Approved for studs, masonry and post-installed rebar
- Nine helical mixing deflectors inside nozzle[†]
- Dustless drilling

CARTRIDGE

^{*} Natural stone not included in ETA. Tensile load capabilities may vary in natural stone. Preliminary tests prior to application are recommended.

High Performance

USE IN CONCRETE STRUCTURAL APPLICATIONS WHERE LOADING, TIME AND PERFORMANCE ARE CRITICAL.

		OPT	24/0513	
ETA	CE	OPT 7		24/0313
A ETA	6	REBAR		24/0510
Î		MASONRY		24/0512
EMISSIONS DANS LARR INTERREP				VRAS VED MATERIAL
VOC / A+ CDADE	I EEN TES	TED	DOTAE	DI E WATED

H501 / HYBRID

Installation Parameters

		M8	M10	M12	M16	M20	M24	M27	M30
Effective Anchor Depth	h _{ef} (mm)	60–160	60–200	70–240	80–320	90–400	96–480	108–540	120–600
Hole Diameter	d ₀ (mm)	10	12	14	18	24	28	32	35
Fixture Hole	d _f (mm)	9	12	14	18	22	26	30	33
Max. Torque	T _{inet} (Nm)	10	20	40	80	120	160	180	200

Member Thickness, Edge Distance and Spacing

		M8	M10	M12	M16	M20	M24	M27	M30
Min. Concrete Thickness	h _{min} (mm)	h _{ef} + 30mm ≥100mm				h _{ef} + 2 d ₀			
Min. Edge Distance	C _{min} (mm)	40	50	60	80	100	120	135	150
Min. Spacing	S _{min} (mm)	40	50	60	80	100	120	135	150

Chemical Volume Calculator

		M8	M10	M12	M16	M20	M24	M27	M30
Volume of Chemical per cm of Hole Depth	mL / cm	0.5	0.8	1.0	1.7	2.5	4.1	5.4	6.4
Standard Hole Depth	mm	80	90	110	125	170	210	250	300
Volume Required for Standard Hole	mL	4	7	11	21	43	86	134	192
Total Holes per 420mL Tube		110	68	41	22	11	5	3	2

^{*}Volume calculation based on 2/3 standard hole depth filled and 5% product waste due to initial and residual mixing.

H501 HYBRID

Installation

Refer to technical assessment (ETA) document for full installation.

Use with MCXND3

Working and curing times

Base Material Temp.	0°C-4°C	5°C-9°C	10°C-19°C	20°C-29°C	30°C-34°C	35°C-39°C	40°C +
Gel Working Time	45 mins	25 mins	15 mins	6 mins	4 mins	2 mins	1.5 mins
Curing Time Dry Concrete	7 h	2 h	80 mins	45 mins	25 mins	20 mins	15 mins
Curing Time Wet Concrete	14 h	4 h	160 mins	90 mins	50 mins	40 mins	30 mins

Note: resin temperature must be at least 20°C.

H501 HYBRID

- Design Resistance: ultimate design loads in kN for single anchor in C20/25.
 Temperature 24°C average–40°C maximum (short-term temperature)
 No influence of edge distances or anchor spacing considered.
- Shear Loads: steel strength without lever arm.

Design Resistance Dry/Wet Hammer Drilled and Hollow/Vacuum-Drilled Holes

Steel Decisive

No	n-cracked Concr	ete	M8	M10	M12	M16	M20	M24	M27	M30
Em	nbedment Depth (m	nm)	80	90	110	125	170	210	250	300
5.8	Tension	N _{Rd} [kN]	8.0	11.3	16.6	25.1	42.7	58.1	70.7	84.8
5.0	Shear	V _{Rd} [kN]	7.2	12.0	16.8	31.2	48.8	70.4	92.0	112.0
8.8	Tension	N _{Rd} [kN]	8.0	11.3	16.6	25.1	42.7	58.1	70.7	84.8
0.0	Shear	V _{Rd} [kN]	12.0	18.4	27.2	50.4	78.4	112.8	147.2	179.2
A4-70	Tension	N _{Rd} [kN]	8.0	11.3	16.6	25.1	42.7	58.1	-	-
A4-70	Shear	V _{Rd} [kN]	8.3	12.8	19.2	35.3	55.1	79.5	-	-
A4-80	Tension	N _{Rd} [kN]	8.0	11.3	16.6	25.1	42.7	58.1	-	-
A4-00	Shear	V _{Rd} [kN]	11.3	17.3	25.6	47.4	73.7	106.0	-	-

C	Cracked Concrete	•	M8	M10	M12	M16	M20	M24	M27	M30
Eml	bedment Depth (m	nm)	80	90	110	125	170	210	250	300
5.8	Tension	N _{Rd} [kN]	3.2	4.7	7.6	11.5	19.6	29.0	45.9	61.3
5.0	Shear	V _{Rd} [kN]	7.2	12.0	16.8	31.2	48.8	70.4	92.0	112.0
8.8	Tension	N _{Rd} [kN]	3.2	4.7	7.6	11.5	19.6	29.0	45.9	61.3
0.0	Shear	V _{Rd} [kN]	12.0	18.4	27.2	50.4	78.4	112.8	147.2	179.2
A4-70	Tension	N _{Rd} [kN]	3.2	4.7	7.6	11.5	19.6	29.0	-	-
A4-70	Shear	V _{Rd} [kN]	8.3	12.8	19.2	35.3	55.1	79.5	-	-
A4-80	Tension	N _{Rd} [kN]	3.2	4.7	7.6	11.5	19.6	29.0	-	-
A4-00	Shear	V _{Rd} [kN]	11.3	17.3	25.6	47.4	73.7	106.0	-	-

XCHEM PRO

H501 HYBRID

- Design Resistance: ultimate design loads in kN for single anchor in C20/25.
 Temperature 24°C average–40°C maximum (short-term temperature)
 No influence of edge distances or anchor spacing considered.
- Shear Loads: steel strength without lever arm.

Design Resistance Dry/Wet Hammer-Drilled and Hollow/Vacuum-Drilled Holes - Seismic Loads

Steel Decisive

	C1		M8	M10	M12	M16	M20	M24	M27	M30
Em	bedment Depth (m	nm)	80	90	110	125	170	210	250	300
5.8	Tension	N _{Rd} [kN]	2.0	2.9	5.1	7.7	13.2	20.1	31.8	42.4
5.0	Shear	V _{Rd} [kN]	7.2	12.0	16.8	31.2	48.8	70.4	92.0	112.0
8.8	Tension	N _{Rd} [kN]	2.0	2.9	5.1	7.7	13.2	20.1	31.8	42.4
0.0	Shear	V _{Rd} [kN]	12.0	18.4	27.2	50.4	78.4	112.8	147.2	179.2
A4-70	Tension	N _{Rd} [kN]	2.0	2.9	5.1	7.7	13.2	20.1	-	-
A4-70	Shear	V _{Rd} [kN]	8.3	12.8	19.2	35.3	55.1	79.5	-	-
A4-80	Tension	N _{Rd} [kN]	2.0	2.9	5.1	7.7	13.2	20.1	-	-
A4-60	Shear	V _{Rd} [kN]	11.3	17.3	25.6	47.4	73.7	106.0	-	-

	C2		M8	M10	M12	M16	M20	M24	M27	M30
Eml	Embedment Depth (mm)			90	110	125	170	210	250	300
5.8	Tension	N _{Rd} [kN]	-	-	2.8	4.2	7.1	-	-	-
5.6	Shear	V _{Rd} [kN]	-	-	16.8	31.2	48.8	-	-	-
8.8	Tension	N _{Rd} [kN]	-	-	2.8	4.2	7.1	-	-	-
0.0	Shear	V _{Rd} [kN]	-	-	27.2	50.4	78.4	-	-	-
A4-70	Tension	N _{Rd} [kN]	-	-	2.8	4.2	7.1	-	-	-
A4-70	Shear	V _{Rd} [kN]	-	-	19.2	35.3	55.1	-	-	-
A4-80	Tension	N _{Rd} [kN]	-	-	2.8	4.2	7.1	-	-	-
A4-00	Shear	V _{Rd} [kN]	-	-	25.6	47.4	73.7	-	-	-

XCHEM PRO

H501 / HYBRID

- Shear Loads: steel strength without lever arm.
- Working Loads: in kg for single anchor in C20/25.
 Temperature 24°C average–40°C maximum (short-term temperature)
 No influence of edge distances or anchor spacing considered.
 Calculated as Design Resistance/1.4 for both Tension and Shear.

Working Load Dry/Wet Hammer-Drilled and Hollow/Vacuum-Drilled Holes

Steel Decisive

No	n-cracked Concr	ete	M8	M10	M12	M16	M20	M24	M27	M30
Em	bedment Depth (n	nm)	80	90	110	125	170	210	250	300
5.8	Tension	N _{Rw} [kg]	580	820	1200	1820	3110	4220	5140	6170
5.6	Shear	V _{Rw} [kg]	520	870	1220	2270	3550	5120	6690	8150
8.8	Tension	N _{Rw} [kg]	580	820	1200	1820	3110	4220	5140	6170
0.0	Shear	V _{Rw} [kg]	870	1330	1980	3660	5700	8210	10710	13040
A 4 70	Tension	N _{Rw} [kg]	580	820	1200	1820	3110	4220	-	-
A4-70	Shear	V _{Rw} [kg]	600	930	1400	2560	4010	5780	-	-
A4-80	Tension	N _{Rw} [kg]	580	820	1200	1820	3110	4220	-	-
A4-00	Shear	V _{Rw} [kg]	820	1250	1860	3440	5360	7710	-	-

(Cracked Concrete	•	M8	M10	M12	M16	M20	M24	M27	M30
Em	bedment Depth (m	nm)	80	90	110	125	170	210	250	300
5.8	Tension	N _{Rw} [kg]	230	340	550	830	1420	2110	3340	4460
Shea	Shear	V _{Rw} [kg]	520	870	1220	2270	3550	5120	6690	8150
8.8	Tension	N _{Rw} [kg]	230	340	550	830	1420	2110	3340	4460
0.0	Shear	V _{Rw} [kg]	870	1330	1980	3660	5700	8210	10710	13040
A4-70	Tension	N _{Rw} [kg]	230	340	550	830	1420	2110	-	-
A4-70	Shear	V _{Rw} [kg]	600	930	1400	2560	4010	5780	-	-
A4-80	Tension	N _{Rw} [kg]	230	340	550	830	1420	2110	-	-
A4-00	Shear	V _{Rw} [kg]	820	1250	1860	3440	5360	7710	-	-

XCHEM® PRO

H501 HYBRID

Characteristic Performance in Aerated Concrete

Compressive Strength of Material ≥ 6 MPa Temp. Range -40°C to 40°C

Size	Condition	Dry, internal conditions	Wet conditions	All conditions		
	h _{ef} (mm)	Tension (kN)	Tension (kN)	Shear (kN)		
M8	80	2.5	2.5	6		
M10	90	4.0 3.5				
M12	400	5.0	4.5	10		
M16	100	6.5	5.5			

Note: the values are valid for steel 5.6 or greater. For steels 4.6 and 4.8, multiply shear by 0.8.

Typical Performance for Solid Masonry

Compressive Strength of Material \geq 20 MPa Density $\rho m \geq$ 1600 kg/m³ Temp. Range -40°C to 40°C

Size	Installation Parameters						Characteristic Resistance		Service Loads	
	Drill Hole Ø	Min Edge C _{min}	Min Spacing S _{min}	Drill Depth h ₁	Embedment Depth h _{ef}	Installation Torque T _{inst}	Tension N _{rk}	Shear V _{rk}	Tension F _N	Shear F _v
	(mm)	(mm)	(mm)	(mm)	(mm)	(Nm)	(kN)	(kN)	(kg)	(kg)
M8	10	- 60	120	85	80	2	4.5	5	131	146
M10	12			95	90		5.5		160	
M12	14		120	405	105 100		6		175	
M16	18			105				8	175	233

Note: safety factor of 3.5 applies for service loads.

Typical Performance for Hollow Masonry

Compressive Strength of Material ≥ 6 MPa Density pm ≥ 700 kg/m³ Temp. Range -40°C to 40°C

Size	Installation Parameters							Characteristic Resistance		Service Loads	
	Drill Hole Ø	Sleeve Size	Min Edge C _{min}	Min Spacing S _{min}	Drill Depth h₁	Embedment Depth h _{ef}	Installation Torque T _{inst}	Tension N _{rk}	Shear V _{rk}	Tension F _N	Shear F _v
	(mm)		(mm)	(mm)	(mm)	(mm)	(Nm)	(kN)	(kN)	(kg)	(kg)
M8	12	12 x 80	100		85	80	2	0.9	2.5	26	73
M10	16	16 x 85		100	90	85					73
M12	20	20 x 85		120							0.7
M16	20	20 x 130			135	130		1.2	3	35	87

Note: safety factor of 3.5 applies for service loads. For performance for calcium silicate refer to ETA.

XCHEM PRO

H501 HYBRID

Packaging

300 / 420 mL tube.

Storage

18 months (from 5–25°C) or at lower temperatures for shorter periods of time (e.g. during transport). Higher temperatures shorten storage life. Store the cans in an upright position. Avoid direct sunlight.

Health, safe handling and disposal information

Additional information on safety, safe handling instructions, personal protective equipment and disposal information is in a safety data sheet. Safety data sheets are available at **hobson.com.au**

Warning

NOTE: Instructions contained in this document are based on Hobson's research and experience.

However, due to specific conditions and working methods, preliminary tests prior to any application of XCHEM™ products are recomended.