PRODUCT DATA

XBolt® Coupler Mechanical Galvanised

Page 1 of 2

XBolt® is a single unit screw type anchor that can be used in solid concrete applications. Fixing is achieved by screwing the anchor into a drilled hole in concrete. As it is screwed in, the anchor taps the hole, thus enabling it to produce a mechanical interlock with the concrete.

Applications

- · Mechanical, electrical and pipe hanger applications
- · Bottom plate fixing to concrete slabs
- · Ceiling hanger applications
- · Timber frame tie down to concrete slabs

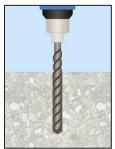
Material

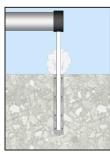
Carbon Steel

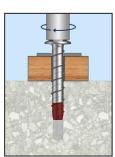
Finish

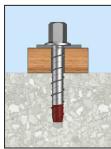
Mechanical Galvanised

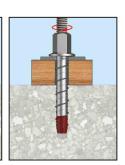
Part	QFind	Dia	Length	Pack Qty
		Ø (mm)	(mm)	
MXCMSGM120100	MXC100	M12	100	25
MXCMSGM120150	MXC101	M12	150	25




Features

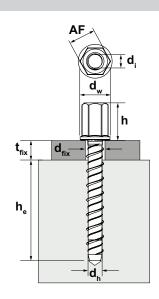

- · Suitable for medium to heavy loads
- · Suitable for small anchor spacing and edge distance applications
- · Quick and easy to install
- Fully removable
- · For use with M12 HDG Allthreaded rod




Installation

Disclaimer: While every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees, disclaim any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document.

ENGINEERING



XBolt® Coupler Mechanical Galvanised

Page 2 of 2

Installation Specification

Installation Parameters			Size	
			Ø12 X 100	Ø12 X 150
Nominal hole diameter	d _h	(mm)	12.0	12.0
Minimum embedment depth	h _{e,min}	(mm)	55.0	55.0
Min. hole diameter on fixture	d _{fix}	(mm)	15.0	15.0
Wrench size (across flats)	AF	(mm)	19.0	19.0
Coupler Height	h	(mm)	30.0	30.0
Flange Head Diameter	d _w	(mm)	25.0	25.0
Internal Thread Diameter	d _i	(mm)	M12 x 1.75	M12 x 1.75
Minimum spacing	S _{min}	(mm)	60.0	60.0
Minimum edge distance	C _{min}	(mm)	60.0	60.0

Basic Load Performance in 32 MPa non-cracked concrete

² Working Load is the governing minimum allowable load obtained by comparing relevant concrete and steel working loads. Factor of safety of FOS = 2.5 for steel and FOS = 3.0 for concrete are already included.

Size	Embedment Depth	Design Tensile Resistance ¹	Working Load in Tension ²
	h _e (mm)	фN (kN)	N _{WLL} (kN)
	55	7.80	4.30
Ø12	60	11.30	6.30
	90	24.60	13.70
	110	34.20	19.00

Size	Embedment Depth	Edge Distance	Design Shear Resistance ¹	Working Load in Shear ²
	h _e (mm)	c ₁ (mm)	фV (kN)	V _{WLL} (kN)
	65	40	-	-
040		80	9.70	5.40
Ø12		120	17.90	9.90
		150	25.00	13.80

Basic Load Performance in 20 MPa non-cracked concrete

Size	Embedment Depth	Design Tensile Resistance ¹	Working Load in Tension ²
	h _e (mm)	фN (kN)	N _{WLL} (kN)
	55	6.10	3.30
Ø12	60	8.90	4.90
012	90	19.40	10.80
	110	27.00	15.00

Size	Embedment Depth	Edge Distance	Design Shear Resistance ¹	Working Load in Shear ²
	h _e (mm)	c ₁ (mm)	фV (kN)	V _{WLL} (kN)
	65	40	-	-
Ø12		80	7.60	4.20
Ø12		120	14.10	7.80
		150	19.70	10.90

Maximum Installation Torque (Nm)

Base Material: 32 MPa Co	oncrete
Anchor Diameter ø (mm)	12
Installation Torque (Nm)	80

Disclaimer: While every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees, disclaim any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document.

HOBSON ENGINEERING

¹ Design Resistance is the governing minimum load resistance obtained by comparing relevant concrete and steel resistances. Capacity reduction factors of f = 0.60 for concrete and f = 0.80 for steel are already included.