

## **XBolt<sup>®</sup> Eye Zinc Yellow Passivate**

XBolt® is a single unit screw type anchor that can be used in solid concrete applications. Fixing is achieved by screwing the anchor into a drilled hole in concrete. As it is screwed in, the anchor taps the hole, thus enabling it to produce a mechanical interlock with the concrete.

#### Applications

- · Suspension of mechanical and electrical services
- · Secure anchor point that can be used with rope, cables, shackles and hooks
- Suspended signage (internal)



| Part          | QFind  | Size | Length | TL   | D    | н    | Pack<br>Qty |
|---------------|--------|------|--------|------|------|------|-------------|
|               |        |      | L (mm) | (mm) | (mm) | (mm) |             |
| MXEMSYM080055 | MXE100 | M8   | 100    | 55   | 8    | 14   | 50          |
| MXEMSYM100065 | MXE101 | M10  | 110    | 65   | 10   | 17   | 50          |
| MXEMSYM120075 | MXE102 | M12  | 120    | 75   | 12   | 22   | 50          |







•

•



Disclaimer: While every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees, disclaim any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document.





hobson.com.au QUALITY FASTENERS SINCE 1935

2004031DS

Page 1 of 2



ENGINEERING

# **PRODUCT DATA**

# **XBolt® Eye Zinc Yellow Passivate**

#### Installation Specification

| Size | Nominal<br>hole diameter | Minimum<br>embedment<br>depth | Minimum<br>spacing    | Minimum edge<br>distance |
|------|--------------------------|-------------------------------|-----------------------|--------------------------|
| Ø    | d <sub>h</sub> (mm)      | h <sub>e,min</sub> (mm)       | S <sub>min</sub> (mm) | C <sub>min</sub> (mm)    |
| M8   | 8                        | 40                            | 40                    | 40                       |
| M10  | 10                       | 50                            | 50                    | 50                       |
| M12  | 12                       | 55                            | 60                    | 60                       |

## Basic Load Performance in 32 MPa non-cracked concrete

<sup>1</sup> Design Resistance is the governing minimum load resistance obtained by comparing relevant concrete and steel resistances. Capacity reduction factors of  $\phi = 0.60$  for concrete and  $\phi = 0.80$  for steel are already included. <sup>2</sup> Working Load is the governing minimum allowable load obtained by comparing relevant concrete and steel working loads. Factor of safety of FOS = 2.5 for steel and FOS = 3.0 for concrete are already included.

| Size | Embedment<br>Depth  | Design Tensile<br>Resistance <sup>1</sup> | Working Load<br>in Tension <sup>2</sup> |
|------|---------------------|-------------------------------------------|-----------------------------------------|
| Ø    | h <sub>e</sub> (mm) | ØN <sub>d</sub> (kN)                      | N <sub>wLL</sub> (kN)                   |
| M8   | 40                  | 5.7                                       | 3.1                                     |
|      | 55                  | 10.6                                      | 5.9                                     |
| M10  | 50                  | 8.8                                       | 4.8                                     |
|      | 65                  | 14.4                                      | 8.0                                     |
| M12  | 55                  | 7.8                                       | 4.3                                     |
|      | 60                  | 11.3                                      | 6.2                                     |
|      | 75                  | 18.0                                      | 9.9                                     |

| Size | Embedment<br>Depth  | Edge Distance       | Design Shear<br>Resistance <sub>1</sub> | Working Load<br>in Shear <sub>2</sub> |
|------|---------------------|---------------------|-----------------------------------------|---------------------------------------|
| ø    | h <sub>e</sub> (mm) | c <sub>1</sub> (mm) | ØV <sub>d</sub> (kN)                    | V <sub>wLL</sub> (kN)                 |
| M8   | 55                  | 40                  | 3.3                                     | 1.8                                   |
|      |                     | 60                  | 5.8                                     | 3.2                                   |
|      |                     | 80                  | 8.6                                     | 4.8                                   |
|      |                     | 100                 | 11.8                                    | 6.5                                   |
| M10  | 65                  | 50                  | 4.9                                     | 2.7                                   |
|      |                     | 80                  | 9.1                                     | 5.1                                   |
|      |                     | 100                 | 12.4                                    | 6.9                                   |
|      |                     | 120                 | 15.9                                    | 8.8                                   |
| M12  | 75                  | 60                  | 6.6                                     | 3.6                                   |
|      |                     | 80                  | 9.7                                     | 5.3                                   |
|      |                     | 120                 | 16.7                                    | 9.3                                   |
|      |                     | 150                 | 22.6                                    | 12.6                                  |

h

### Installation





### Installation Guide

- 1. Drill a hole ensuring minimum embedment depth using the correct drill bit size.
- 2. Clean the hole thoroughly with a vacuum or a hand pump to remove the debris.
- 3. Twist the anchor into the hole initially by hand. Once the tip of the anchor has been tapped into the hole, continue the installation using a hardened material such as a metal rod through the eye of the anchor.
- 4. Install the anchor until the correct embedment depth is reached.

Disclaimer: While every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees, disclaim any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document.

Bolt Tension | Anti-Vibration | Product Reliability | Traceability



2004031DS

# hobson.com.au QUALITY FASTENERS SINCE 1935

Page 2 of 2

