

PRODUCT DATA

Bi-Metal SDS Wafer Head 304SS

Page 1 of 2

Metal to metal fixing where a low head profile is required.

Applications

- · Metal to Metal Fixing: Signage, brackets, furniture
- · Cladding metal sheets
- · Examples: Stainless/ aluminium/ fibreglass sheeting

Material

Bi-Metal 304 Stainless

Finish

R1000 Hours Protective Coat

Pullout Values

Plate	Metal Plate Thickness	¹Mean Load	² Characteristic Load	³Working Load		
	(mm)	(N)	(N)	(N)		
G2 Purlin	0.7	950	850	350		
G2 Purlin	1.1	1700	1450	550		
G550 Purlin	1.5	3600	3400	1400		
G450 Purlin	1.9	4950	4550	1800		
G450 Purlin	2.4	7150	6450	2600		

	Drill Point Test					Mechanical Properties				
Part	Plate Type	ate Type Load Drill Speed *Drill Time *Dr		*Drill Time	Torsional Strength 1Mean Tensile Strength		¹ Mean Shear Strength	² Characteristic Tensile Strength	² Characteristic Shear Strength	
	(mm)	(kg)	(RPM)	(Max. individual) Seconds	(Max. average) Seconds	(Nm)	(N)	(N)	(N)	(N)
T4XMXWP1016025	1.5 G450	18	2200	4	3	6.9	9800	5900	9450	5700

*Drilling thickness is 4mm max

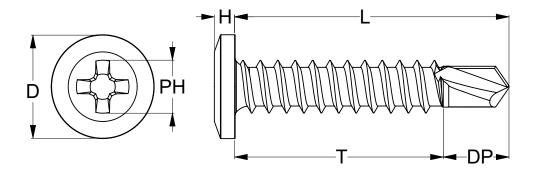
Note: 1000N = 1kN

- ¹ Mean Load/Strength is the average ultimate strength of samples tested.
- ² Characteristic Load/Strength: 95% of these screws are expected to have a strength greater than the loads shown.
- ³ Working Load is the governing minimum allowable load obtained by comparing relevant concrete and steel working loads. Factor of Safety (FOS=2.5 for steel and FOS=3.0 for concrete) are already included.

All values are obtained under laboratory conditions using DRiLLX® product. Safety factors should be considered for design purposes. Actual pull out loads may differ depending on certain properties of the base material.

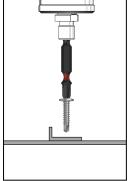
Disclaimer: While every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees, disclaim any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document.

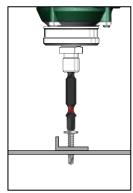
HOBSON

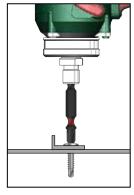


PRODUCT DATA

Bi-Metal SDS Wafer Head 304SS


Page 2 of 2


Part	QFind	Gauge	TPI	Length	Thread Length	Drill Point Length	Head Height	Head ø	Drive Size	Pack Qty
				L (mm)	T (mm)	DP (mm)	H (mm)	D (mm)	PH (size)	
T4XMXWP1016025	Q920	10	16	25	20	5	1.8	9	Phillips #2	500



Installation

Recommended
Phillips #2 Drive Bit:

TXDIPPHS20050 - 50mm
TXDIPPHS20075 - 75mm
TXDIPPHS20100 - 100mm
TXDIPPHS20150 - 150mm

Installation Guide

- **1.** Use a cordless screw driver set between 2,200-3,000 RPM. Fit the Phillips Drive Bit into the screw and place at the fastening position.
- **2.** Apply consistently firm pressure to the screw driver while the screw is drilling.
- 3. Care should be taken not to overtighten the screw.

Disclaimer: While every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees, disclaim any and all liability to any person in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document.

^{*}Installation with impact drivers not recommended.