

Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél.: (33) 01 64 68 82 82 Website: www.cstb.fr

European Technical Assessment

ETA-12/0547 of 19/07/2017

English translation prepared by CSTB - Original version in French language

General Part

Nom commercial Trade name

Mungo m1t-

Famille de produit Product family

Cheville métallique à expansion par vissage à couple contrôlé, de fixation dans le béton fissuré et non fissuré diamètres M8, M10, M12 et M16

Torque-controlled expansion anchor for use in cracked and uncracked concrete: sizes M8, M10, M12 and M16

Titulaire Manufacturer MUNGO Befestigungstechnik AG Bomfeldstrasse 2 CH – 4603 OLTEN Switzerland

Usine de fabrication Manufacturing plants

Plant 1

Cette evaluation contient: This Assessment contains 18 pages incluant 15 annexes qui font partie intégrante de cette évaluation

18 pages including 15 annexes which form an integral part of this assessment

 Base de l'ETE
 DEE 330232-00-0601, Octobre 2016

 Basis of ETA
 EAD 330232-00-0601, October 2016

Cette evaluation remplace: ETE- 12/0547 du 29/04/2014
This Assessment replaces ETA-12/0547 dated 29/04/2014

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The Mungo m1t- anchor is an anchor made of zinc electroplated steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The illustration and the description of the product are given in Annex A.

2 Specification of the intended use

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic tension resistance acc. ETAG001, Annex C	See Annex C1
Characteristic shear resistance acc. ETAG001, Annex C	See Annex C2
Characteristic tension resistance acc. CEN/TS 1992-4	See Annex C5
Characteristic shear resistance acc. CEN/TS 1992-4	See Annex C6
Characteristic resistance under seismic action Cat 1 acc. TR045	See Annex C9
Characteristic resistance under seismic action Cat 2 acc. TR045	See Annex C10
Displacements	See Annex C11

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Characteristic tension resistance under fire acc. ETAG001, Annex C	See Annex C3
Characteristic shear resistance under fire acc. ETAG001, Annex C	See Annex C4
Characteristic tension resistance under fire acc. CEN/TS 1992-4	See Annex C7
Characteristic shear resistance under fire acc. CEN/TS 1992-4	See Annex C8

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For Basic requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources ((BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

3.8 General aspects relating to fitness for use

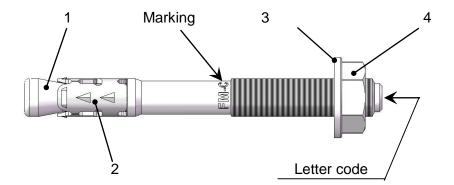
Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4 Assessment and verification of constancy of performance (AVCP)

According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	ı	1

5 Technical details necessary for the implementation of the AVCP system


Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.

The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.

The original French version is signed by

Charles Baloche
Technical Director

Assembled anchor:

- 1. Bolt
- 2. Expansion sleeve
- 3. Washer
- 4. Hexagonal nut

Marking on the bolt:

FM-C (product name) followed by MX/Y where

MX = thread diameter Y = fixture thickness

Table 1: Materials

Part	Designation	Material	Protection	
1 Bolt		M8 and M10: 19MnB4 DIN 1654-T4	Calvaniand > Pum	
'	Boit	M12 and M16 C30BKD EU 119-74	Galvanised ≥ 8µm	
2	Expansion sleeve	Stainless steel X2CrNiMo 17-12-2 UNI EN 10088/2	-	
3	Washer	C-steel DIN 125/1 (normal), DIN 9021 (large)	Galvanised ≥ 8µm	
4	Hexagonal nut	C-steel DIN 934, steel grade 8	Galvanised ≥ 8µm	

Mungo m1t- expansion anchor	
Product description	Annex A1
Installation condition - Materials	

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads,
- Seismic load (category C2) loads,
- Fire.

Base materials:

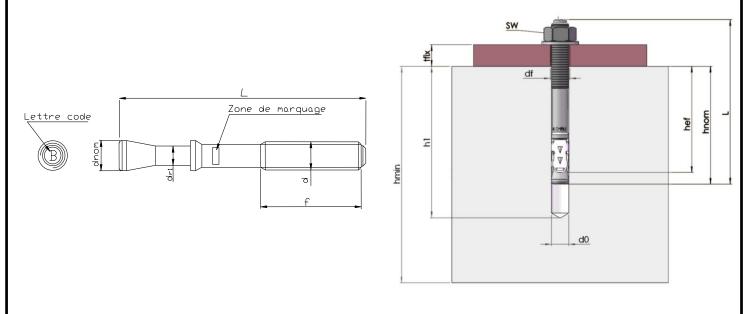
- Cracked concrete and non-cracked concrete
- Reinforced or unreinforced normal weight concrete of strength classes C 20/25 at least to C50/60 at most according to ENV 206: 2000-12.

Use conditions (Environmental conditions):

Structures subject to dry internal conditions.

Design:

- The anchorages are designed in accordance with the ETAG001 Annex C "Design Method for Anchorages" or CEN/TS 1992-4-4 " Design of fastenings for use in concrete" under the responsibility of an engineer experienced in anchorages and concrete work.
- For seismic application the anchorages are designed in accordance with TR045 "Design of Metal Anchors For Use In Concrete Under Seismic Actions".
- For application with resistance under fire exposure the anchorages are designed in accordance with method given in TR020 "Evaluation of Anchorage in Concrete concerning Resistance to Fire".
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.


Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Effective anchorage depth, edge distances and spacing not less than the specified values without minus tolerances.
- Hole drilling by hammer drill.
- Cleaning of the hole of drilling dust.
- Application of specified torque moment using a calibrated torque wrench.
- In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength mortar and no shear or oblique tension loads in the direction of aborted hole.

Mungo m1t- expansion anchor	
Intended Use Specifications	Annex B1

Table 2: Anchor dimensions

	d x L	Marking	Letter code	L	d _{nom}	d _{r1}	f
	UXL	Marking	ID	(mm)	(mm)	(mm)	(mm)
	M8x68	FM-C 8/4	А	68	8		30
	M8x75	FM-C 8/10	В	75			30
8 M	M8x90	FM-C 8/25	С	90		5,8	40
Σ	M8x115	FM-C 8/50	D	115	0	5,6	60
	M8x135	FM-C 8/70	Е	135			80
	M8x165	FM-C 8/100	G	165			80
	M10x90	FM-C 10/10	Α	90	10		40
	M10x105	FM-C 10/25	В	105		7,4	55
M10	M10x115	FM-C 10/35	С	115			55
È	M10x135	FM-C 10/55	D	135			85
	M10x155	FM-C 10/75	Е	155			85
	M10x185	FM-C 10/105	F	185			85
	M12x110	FM-C 12/10	Α	110		8,8	65
	M12x120	FM-C 12/20	В	120			65
M12	M12x145	FM-C 12/45	С	145	12		85
_	M12x170	FM-C 12/70	D	170			85
	M12x200	FM-C 12/100	Е	200			85
	M16x130	FM-C 16/10	А	130	16		65
M16	M16x150	FM-C 16/30	В	150		11 0	85
Σ	M16x185	FM-C 16/60	С	185		11,8	85
	M16x220	FM-C 16/100	D	220			85

Mungo m1t- expansion anchor	
Intended Use Installation parameters	Annex B2

Table 3: Installation data

	dxL	ID	t _{fix}	d ₀	h ₁	h _{nom}	h _{ef}	d _f	h _{min}	T _{inst}	SW (mm)	Marking												
	M8x68	Α	4	, ,	, ,	, ,	, ,	,	,	, ,	, ,	FM-C 8/4												
	M8x75	В	10									FM-C 8/10												
∞	M8x90	С	25		70	- 4	40		400	00	40	FM-C 8/25												
₩	M8x115	D	50	8	70	54	48	9	100	20	13	FM-C 8/50												
	M8x135	Е	70						FM-C 8/70															
	M8x165	G	100									FM-C 8/100												
	M10x90	Α	10									FM-C 10/10												
	M10x105	В	25	10	00								FM-C 10/25											
M10	M10x115	С	35			67	00	40	400	40	47	FM-C 10/35												
È	M10x135	D	55		10 80	80	80 6	67	60	12	120	40	17	FM-C 10/55										
	M10x155	Е	75																					FM-C 10/75
	M10x185	F	105																					
	M12x110	Α	10				_																FM-C 12/10	
	M12x120	В	20									FM-C 12/20												
M12	M12x145	C	45	12	100	81	72	14	150	60	19	FM-C 12/45												
	M12x170	D	70									FM-C 12/70												
	M12x200	Ш	100									FM-C 12/100												
	M16x130	Α	10									FM-C 16/10												
M16	M16x150	В	30	16	115	97	86	18	170	120	24	FM-C 16/30												
Σ	M16x185	С	60	10	113	91	00	10	170	120	24	FM-C 16/60												
	M16x220	D	100											FM-C 16/100										

			M8	M10	M12	M16
Min. member thickness	h _{min}	[mm]	100	120	150	170
Minimum edge distance	C _{min}	[mm]	50	60	70	85
Corresponding spacing	s≥	[mm]	75	120	150	170
Minimum spacing	Smin	[mm]	50	60	70	80
Corresponding edge distance	c≥	[mm]	65	80	90	120

Mungo m1t- expansion anchor	
Intended Use Installation parameters	Annex B3

Table 4: Characteristic values for tension loads in case of static and quasi static loading for design method A acc. $\overline{\text{ETAG001}}$, Annex C

			M8	M10	M12	M16
Steel failure						
Char. resistance	$N_{Rk,s}$	[kN]	23,8	38,7	54,7	98,4
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,5			

Pullout failure $N_{Rk,p} = \Psi_c \times N^0_{Rk,p}$									
Char. resistance in	non-cracked	$N^0_{Rk,p}$	[kN]	9	9 16 20		35		
concrete C20/25	cracked	$N^0_{Rk,p}$	[kN]	6	12	16	20		
Partial safety factor for cracked or non-cra	Partial safety factor for cracked or non-cracked concrete		[-]		1,5 ²⁾				
	concrete C30/37		[-]		1,22				
Increasing factor for N _{RK}	concrete C40/50	Ψc	[-]		1,41				
	concrete C50/60		[-]						

Concrete cone failu	Concrete cone failure and splitting failure								
Effective embedment	depth	h _{ef}	[mm]	48	60	72	86		
Partial safety factor for craked or non-crace	cked concrete	γ_{Mc} $=\gamma_{Msp}^{1)}$		1,52)					
	concrete C30/37		[-]		1,22				
Increasing factor for N _{RK}	concrete C40/50	Ψ_{c}	[-]		1,41				
	concrete C50/60		[-]	1,55					
Char. spacing	concrete cone failure	S _{cr,N}	[mm]	140	180	220	260		
Onar. opaoing	splitting failure	S _{cr,sp}	[mm]	290	360	430	520		
Char edge distance	concrete cone failure	C _{cr,N}	[mm]	70	90	110	130		
Char. edge distance	splitting failure	C _{cr,sp}	[mm]	145	180	215	260		

¹⁾ In absence of other national regulations

Mungo m1t- expansion anchor Design according to ETAG001, Annex C Characteristic resistance under tension loads

²⁾ The value contains an installation safety factor γ_2 = 1.0

Table 5: Characteristic values for shear loads in case of static and quasi static loading for design design method A acc. ETAG001, Annex C

			M8	M10	M12	M16
Steel failure without lever arm						
Char. resistance	$V_{Rk,s}$	[kN]	12,9	24,2	33,8	66,4
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,5			

Steel failure with lever arm	-	-			-		
Char. bending resistance	$M^0_{Rk,s}$	[Nm]	34	67	118	300	
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,5				

Concrete pry-out failure							
Factor in equation (5.6) of ETAG Annex C, § 5.2.3.3	k	[-]	1,0	2,0	2,0	2,0	
Partial safety factor	γ _{Mc} 1)	[-]	1,52)				

Concrete edge failure							
Effective length of anchor under shear loading	l _f	[mm]	48	60	72	86	
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	
Partial safety factor	γ _{Mc} 1)	[-]	1,52)				

¹⁾ In absence of other national regulations

Mungo m1t- expansion anchor

Design according to ETAG001, Annex C

Characteristic resistance under shear loads

 $^{^{2)}}$ The value contains an installation safety factor $\gamma_{2}\text{=}\ 1.0$

Table 6: Characteristic tension resistance in cracked and non-cracked concrete under fire exposure for design method A acc. ETAG001, Annex C

			M8	M10	M12	M16
Steel failure	<u> </u>					
	R30 N _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1
Characteristic registance	R60 N _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4
Characteristic resistance	R90 N _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0
	R120 N _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6

Pullout failure (cracked and non-cracked concrete)						
Char. resistance in concrete ≥ C20/25	R30 N _{Rk,p,fi}	[kN]	1,5	3,0	4,0	5,0
	R60 N _{Rk,p,fi}	[kN]	1,5	3,0	4,0	5,0
	R90 N _{Rk,p,fi}	[kN]	1,5	3,0	4,0	5,0
	R120 N _{Rk,p,fi}	[kN]	1,2	2,4	3,2	4,0

Concrete cone and splitting failure ²⁾ (cracked and non-cracked concrete)							
	R30 N ⁰ _{Rk,c,fi}	[kN]	2,9	5,0	7,9	12,3	
Char. resistance in concrete ≥ C20/25	R60 N ⁰ _{Rk,c,fi}	[kN]	2,9	5,0	7,9	12,3	
	R90 N ⁰ _{Rk,c,fi}	[kN]	2,9	5,0	7,9	12,3	
	R120 N ⁰ _{Rk,c,fi}	[kN]	2,3	4,0	6,3	9,9	
Characteristic spacing	S _{cr,N,fi}	[mm]	4 x h _{ef}				
Characteristic edge distance	C _{cr,N,fi}	[mm]	2 x h _{ef}				

¹⁾ Design under fire exposure is performed according to the design method given in TR020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR020, Section 2.2.1.

Mungo m1t- expansion anchor	
Design according to ETAG001, Annex C Characteristic tension resistance under fire exposure	Annex C3

²⁾ As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Table 7: Characteristic shear resistance in cracked and non-cracked concrete under fire exposure for design method A acc. ETAG001, Annex C

			M8	M10	M12	M16
Steel failure without lever arm		_	_	_		
	R30 V _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1
Characteristic resistance	R60 V _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4
Characteristic resistance	R90 V _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0
	R120 V _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6

Steel failure with lever arm							
Characteristic bending moment	R30 M ⁰ _{Rk,s,fi}	[Nm]	0,4	1,1	2,6	6,7	
	R60 M ⁰ _{Rk,s,fi}	[Nm]	0,3	1,0	2,0	5,0	
	R90 M ⁰ _{Rk,s,fi}	[Nm]	0,3	0,7	1,7	4,3	
	R120 M ⁰ _{Rk,s,fi}	[Nm]	0,2	0,6	1,3	3,3	

Concrete pry-out failure					<u> </u>	•
Factor in equation (5.6) of ETAG Annex C, § 5.2.3.3	k	[-]	1,0	2,0	2,0	2,0
	R30 V _{Rk,cp,fi}	[kN]	2,9	10,0	15,8	24,7
Characteristic resistance	R60 V _{Rk, cp,fi}	[kN]	2,9	10,0	15,8	24,7
Characteristic resistance	R90 V _{Rk, cp,fi}	[kN]	2,9	10,0	15,8	24,7
	R120 V _{Rk, cp,fi}	[kN]	2,3	8,0	12,7	19,8

Concrete edge failure				-	-	•
Eff. length of anchor under shear loading	I _f	[mm]	48	60	72	86
Outside diameter of anchor	d_{nom}	[mm]	8	10	12	16

Design under fire exposure is performed according to the design method given in TR020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR020, Section 2.2.2.

Mungo m1t- expansion anchor

Design according to ETAG001, Annex C
Characteristic shear resistance under fire exposure

Annex C4

Table 8: Characteristic values for tension loads in case of static and quasi static loading for design design method A acc. CEN/TS 1992-4

			M8	M10	M12	M16
Steel failure						
Char. resistance	$N_{Rk,s}$	[kN]	23,8	38,7	54,7	98,4
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,5			

Pullout failure $N_{Rk,p} = \Psi_c \times N_{Rk,p}^0$									
Char. resistance in concrete C20/25	non-cracked	$N^0_{Rk,p}$	[kN]	9	16	20	35		
	cracked	$N^0_{Rk,p}$	[kN]	6	12	16	20		
Partial safety factor for cracked or non-cra	cked concrete	γ _{Mp} ¹⁾	[-]	1,52)					
	concrete C30/37		[-]	1,22					
Increasing factor for N _{RK,p}	concrete C40/50	Ψc	[-]	1,41					
,p	concrete C50/60		[-]	1,55					

Concrete cone failu	e and splitting failure	•					
Effective embedment depth		h _{ef}	[mm]	48	60	72	86
Factor for cracked co	ncrete	k _{cr}		7,2			
Factor for non cracke	d concrete	k _{ucr}		10,1			
Partial safety factor		γ _{Mc} =γ _{Msp} ¹⁾		1,5 ²⁾			
Char. spacing	concrete cone failure	S _{cr,N}	[mm]	140	180	220	260
Char. Spacing	splitting failure	S _{cr,sp}	[mm]	290	360	430	520
Char adda distance	concrete cone failure	C _{cr,N}	[mm]	70	90	110	130
Char. edge distance	splitting failure	C _{cr,sp}	[mm]	145	180	215	260

Mungo m1t- expansion anchor

Design according to CEN/TS 1992-4

Characteristic resistance under tension loads

 $^{^{1)}}$ In absence of other national regulations $^{2)}$ The value contains an installation safety factor $\gamma_{2}\text{=}\ 1.0$

Table 9: Characteristic values for shear loads in case of static and quasi static loading for design design method A acc. CEN/TS 1992-4

			M8	M10	M12	M16	
Steel failure without lever arm							
Char. resistance	$V_{Rk,s}$	[kN]	12,9	24,2	33,8	66,4	
Factor considering ductility	k_2	[-]	0,8				
Partial safety factor	γ _{Ms} 1)	[-]	1,5				

Steel failure with lever arm	-	-	-	-	-		
Char. bending moment	$M^0_{Rk,s}$	[Nm]	34	67	118	300	
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,5				

Concrete pry-out failure						
Factor in equation (16) of CEN/TS 1992-4-4, § 6.2.2.3	k ₃	[-]	1,0	2,0	2,0	2,0
Partial safety factor	γ _{Mc} 1)	[-]	1,5 ²⁾			

Concrete edge failure								
Effective length of anchor under shear loading	l _f	[mm]	48	60	72	86		
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16		
Partial safety factor	γ _{Mc} ¹⁾	[-]	1,52)					

¹⁾ En absence de réglementation nationale

Mungo m1t- expansion anchor

Design according to CEN/TS 1992-4

Characteristic resistance under shear loads

 $^{^{2)}}$ La valeur comprend un coefficient de sécurité d'installation γ_2 = 1.0

Table 10: Characteristic tension resistance in cracked and non-cracked concrete under fire exposure for design method A acc. CEN/TS 1992-4

			M8	M10	M12	M16
Steel failure						
Characteristic resistance	R30 N _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1
	R60 N _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4
	R90 N _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0
	R120 N _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6

Pullout failure (cracked and non-cracked concrete)								
Char. resistance in concrete ≥ C20/25	R30 N _{Rk,p,fi}	[kN]	1,5	3,0	4,0	5,0		
	R60 N _{Rk,p,fi}	[kN]	1,5	3,0	4,0	5,0		
	R90 N _{Rk,p,fi}	[kN]	1,5	3,0	4,0	5,0		
	R120 N _{Rk,p,fi}	[kN]	1,2	2,4	3,2	4,0		

Concrete cone and splitting failure ²⁾ (cracked and non-cracked concrete)								
	R30 N ⁰ _{Rk,c,fi}	[kN]	2,9	5,0	7,9	12,3		
Char. resistance in concrete ≥ C20/25	R60 N ⁰ _{Rk,c,fi}	[kN]	2,9	5,0	7,9	12,3		
	R90 N ⁰ _{Rk,c,fi}	[kN]	2,9	5,0	7,9	12,3		
	R120 N ⁰ _{Rk,c,fi}	[kN]	2,3	4,0	6,3	9,9		
Characteristic spacing	S _{cr,N,fi}	[mm]	4 x h _{ef}					
Characteristic edge distance	C _{cr,N,fi}	[mm]	2 x h _{ef}					

¹⁾ Design under fire exposure is performed according to the design method given in TR020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR020, Section 2.2.1.

Mungo m1t- expansion anchor	Mungo	m1t-	expansion	anchor
-----------------------------	-------	------	-----------	--------

Design according to CEN/TS 1992-4

Characteristic tension resistance under fire exposure

²⁾ As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Table 11: Characteristic shear resistance in cracked and non-cracked concrete under fire exposure for design method A acc. CEN/TS 1992-4

			M8	M10	M12	M16
Steel failure without lever arm		-				
	R30 V _{Rk,s,fi}	[kN]	0,4	0,9	1,7	3,1
Characteristic resistance	R60 V _{Rk,s,fi}	[kN]	0,3	0,8	1,3	2,4
	R90 V _{Rk,s,fi}	[kN]	0,3	0,6	1,1	2,0
	R120 V _{Rk,s,fi}	[kN]	0,2	0,5	0,8	1,6

Steel failure with lever arm								
Characteristic bending moment	R30 M ⁰ _{Rk,s,fi}	[Nm]	0,4	1,1	2,6	6,7		
	R60 M ⁰ _{Rk,s,fi}	[Nm]	0,3	1,0	2,0	5,0		
	R90 M ⁰ _{Rk,s,fi}	[Nm]	0,3	0,7	1,7	4,3		
	R120 M ⁰ _{Rk,s,fi}	[Nm]	0,2	0,6	1,3	3,3		

Concrete pry-out failure									
Factor in equation (16) of CEN/TS 1992-4-4, § 6.2.2.3	k ₃	[-]	1,0	2,0	2,0	2,0			
	R30 V _{Rk,cp,fi}	[kN]	2,9	10,0	15,8	24,7			
Characteristic resistance	R60 V _{Rk, cp,fi}	[kN]	2,9	10,0	15,8	24,7			
	R90 V _{Rk, cp,fi}	[kN]	2,9	10,0	15,8	24,7			
	R120 V _{Rk, cp,fi}	[kN]	2,3	8,0	12,7	19,8			

Concrete edge failure								
Eff. length of anchor under shear loading	l _f	[mm]	48	60	72	86		
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16		

Design under fire exposure is performed according to the design method given in TR020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR020, Section 2.2.2.

Mungo m1t- expansion anchor

Design according to CEN/TS 1992-4

Characteristic shear resistance under fire exposure

Table 12: Characteristic values for resistance in case of seismic performance

category C1 acc. TR045 "Design of Metal anchor under Seismic Actions"

Anchor sizes			M8	M10	M12	M16	
Tension load							
Steel failure							
Characteristic resistance	N _{Rk,s,seis}	[kN]	23,8	38,7	54,7	98,4	
Partial safety factor ¹⁾	γ̃Ms,seis	[-]		1	,5		
Pull-out failure $N_{Rk,p,seis} = \Psi_c \times N^0_{Rk,p,seis}$							
Characteristic resistance	$N^0_{Rk,p,seis}$	[kN]	6	12	16	20	
Partial safety factor ¹⁾	γMp, seis	[-]		1	,5		
Shear loads							
Steel failure without lever arm							
Characteristic resistance	$V_{Rk,s,seis}$	[kN]	7,7	17,0	30,4	57,6	
Partial safety factor ¹⁾	γ̃Ms, seis	[-]		1	,5		

 $^{^{1)}}$ The recommended partial safety factors under seismic action ($\gamma_{\text{M,seis}})$ are the same as for static loading

Mungo m1t- expansion anchor	
Design according to TR045 Characteristic resistance under seismic actions	Annex C9

Table 13: Characteristic values for resistance in case of seismic performance category C2 acc. TR045 "Design of Metal anchor under Seismic Actions"

Anchor sizes			M8	M10	M12	M16
Tension load						
Steel failure						
Characteristic resistance 2)	$N_{Rk,s,seis}$	[kN]	-	38,7	54,7	98,4
Partial safety factor ³⁾	γ̃Ms,seis	[-]		1	,5	
Pull-out failure $N_{Rk,p,seis} = \Psi_c x$	$N^0_{Rk,p,seis}$					
Characteristic resistance ²⁾	$N^0_{Rk,p,seis}$	[kN]	-	3,3	11,8	20,0
Partial safety factor ³⁾	γMp, seis	[-]		1	,5	
Displacement at DLS ^{1) 2)}	$\delta_{\text{N,sei (DSL)}}$	[mm]	-	2,5	5,0	4,4
Displacement at DLS 1) 2)	$\delta_{\text{N,sei (ULS)}}$	[mm]	-	10,7	20,4	17,8
Shear loads						
Steel failure without lever arm						
Characteristic resistance ²⁾	$V_{Rk,s,seis}$	[kN]	-	11,9	19,3	31,2
Partial safety factor ³⁾	γMs, seis	[-]		1	,5	
Displacement at DLS 1) 2)	$\delta_{\text{V,sei (DSL)}}$	[mm]	-	5,0	7,0	7,0
Displacement at DLS ^{1) 2)}	$\delta_{\text{V,sei (ULS)}}$	[mm]	ı	7,1	9,1	6,6

¹⁾ The listed displacements represent mean values.

Mungo m1t- expansion anchor	
Design according to TR045 Characteristic resistance under seismic actions	Annex C10

²⁾ A smaller displacement may be required in the design provisions stated in section "Design of Anchorage", e.g. in the case of displacement sensitive fastenings or "rigid" supports. The characteristic resistance associated with such smaller displacement may be determined by linear interpolation or proportional reduction.

³⁾ The recommended partial safety factors under seismic action ($\gamma_{M,seis}$) are the same as for static loading.

Table 14: Displacements under tension loading

			М8	M10	M12	M16
Tension load in non-cracked co	Tension load in non-cracked concrete C20/25 [kN]			7,62	9,52	16,67
Diaplacement	δηο	[mm]	0,1	0,1	0,1	0,1
Displacement	δ _N ∞	[mm]	0,5	0,5	0,5	0,5
Tension load in non-cracked co	ncrete	C50/60 [kN]	6,64	11,91	14,76	25,83
Displacement	δ_{N0}	[mm]	0,1	0,2	0,2	0,3
Displacement	δ _N ∞	[mm]	0,5	0,5	0,5	0,5
Tension load in cracked concret	e C20/2	25 [kN]	2,86	5,71	7,62	9,52
Displacement	δ_{N0}	[mm]	1,4	1,2	0,9	0,6
Displacement	δ _N ∞	[mm]	1,4	1,2	1,3	0,6
Tension load in cracked concrete C50/60 [kN]			4,43	8,86	11,81	14,76
Disals seemed	δηο	[mm]	1,8	1,8	1,8	1,8
Displacement	δ _N ∞	[mm]	1,8	1,8	1,8	1,8

Table 15: Displacements under shear loads

			M8	M10	M12	M16
Shear load in cracked and non-cracked concrete C20/25 to C50/60 [kN]		6,19	11,43	16,19	31,43	
Dianlacament	δνο	[mm]	2,3	2,6	2,9	3,3
Displacement	δν∞	[mm]	3,4	3,9	4,3	4,9

Additional displacement due to anular gap between anchor and fixture is to be taken into account.

Mungo m1t- expansion anchor	
Design	Annex C11
Displacements	