




TECHNICAL

Tightening Torque

Page 1 of 2

METRIC NYLOC NUTS - Basic Dimensions & Tightening Torque - DIN985 Propety Class 8 - Coarse Threads

Metric Thread	Across Flats (max)	Nut Height (max)	Prevailing Torque 1 st Install (max)	Clamp Load (65% Proof)	Installation Torque	
	AF	Н	T _{pr}		Zinc Plated	Mech. Gal.
	mm	mm	Nm	kN	Nm	Nm
M5	8	5.0	1.6	5.35	5	11
M6	10	6.0	3.0	7.58	9	19
M8	13	8.0	6.0	13.80	21	45
M10	16	10.0	10.5	21.87	41	87
M12	18	12.0	15.5	31.78	69	149
M14	21	14.0	24.5	43.36	109	236
M16	24	16.0	32.0	59.19	165	363
M18	27	18.5	42.0	74.88	231	514
M20	30	20.0	54.0	95.55	322	723
M22	32	22.0	68.0	118.17	432	978
M24	36	24.0	80.0	137.67	543	1236
M27	41	27.0	94.0	179.01	771	1786
M30	46	30.0	108.0	218.79	1027	2405
M33	50	33.0	122.0	270.66	1372	3248
M36	55	36.0	136.0	318.63	1742	4151
M39	60	39.0	150.0	380.64	2228	5346

Notes

- 1. Tightening torque values are given as a guide only and are based on first tightening of single assemblies in isolation.
- 2. Prevailing torques used in this technical sheet are taken from ISO 2320 and are 50% less than those given by DIN 267-15.
- 3. Clamp load is calculated as 65% of proof stress for property class 8.8 bolt.
- 4. Nut factors (k) used for calculation on installation torque: Zinc Plated = 0.14; MGal = 0.35.
- 5. Zinc Plated applies to both Zinc Yellow Passivated (ZYP) and clear zinc coatings (ZP).

Disclaimer: while every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees disclaim all liability in respect to anything or the consequences of anything done or omitted regarding the whole or any part of this document.

HOBSON

TECHNICAL

Prevailing Torque Lock Nuts

Page 2 of 2

Prevailing torque nuts are a type of lock nut which uses a built-in element to create friction between the mating threads and prevent the nut from rotating freely. They include nyloc, cone lock, met lock, stover and deformed thread nuts. The installed assembly will have both an axial clamp load from tightening of the nut and a radial clamp load on the mating threads.

Installation of Prevailing Torque Lock Nuts

Standard torque values should not be applied to prevailing torque lock nuts as the additional torque required to rotate the nut along the mating threads will result in a lower-than-expected clamp load. The prevailing torque should be added to the target torque to achieve the desired clamp load.

A torque wrench can be used to measure the amount of prevailing torque required to rotate a particular nut along the mating threads. This can then be added to the torque-tension calculation. Alternatively, the maximum prevailing torque from the relevant product standard can be used but be aware that this will likely result in your clamp load being higher than expected.

$$T = F \cdot k \cdot d + T_{pr}$$

T = Required Torque (Nm)

 $F = Desired\ Clamp\ Load\ (kN)$

k = Nut Factor

d = Nominal Thread Diameter (mm)

 T_{vr} = Prevailing Torque (Nm)

Prevailing torque nuts must have full threads all the way through the built-in element and should have at least one <u>full</u> thread protruding from the nut to achieve the expected performance.

Re-use of Prevailing Torque Nuts

Prevailing torque nuts are reusable but every use will reduce their effectiveness. The install and removal torque values will be similar for second installation onwards. When reusing prevailing torque nuts check that the prevailing torque is still suitable for the application with a torque wrench.

Nylon Exposure

The nylon insert in Nyloc® nuts only provide friction resistance on the mating threads. Extreme exposure to sun and salty conditions may damage the nylon but in most conditions the nylon will still maintain a prevailing torque. Nyloc nuts that have been exposed to extreme conditions or sun for a significant amount of time will still prevent failure of the assembly but will not be able to be reused. This makes Nyloc® nuts suitable for outdoor and marine applications provided that the steel coating is appropriate for the environment and application.

Disclaimer: while every reasonable effort has been made to ensure that this document is correct at the time of printing, Hobson Engineering®, its agencies and employees disclaim all liability in respect to anything or the consequences of anything done or omitted regarding the whole or any part of this document.

